Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vitro reconstitution of COPII vesicles from Arabidopsis thaliana suspension-cultured cells

Abstract

Transport vesicles mediate protein traffic between endomembrane organelles in a highly selective and efficient manner. In vitro reconstitution systems have been widely used for studying mechanisms of vesicle formation, polar trafficking, and cargo specificity in mammals and yeast. However, this technique has not yet been applied to plants because of the large lytic vacuoles and rigid cell walls. Here, we describe an Arabidopsis-derived in vitro vesicle formation system to reconstitute, purify and characterize plant-derived coat protein complex II (COPII) vesicles. In this protocol, we provide a detailed method for the isolation of microsomes and cytosol from Arabidopsis thaliana suspension-cultured cells (7–8 h), in vitro COPII vesicle reconstitution and purification (4–5 h) and biochemical and microscopic analysis using specific antibodies against COPII cargo molecules for reconstitution efficiency evaluation (2 h). We also include detailed sample-preparation steps for analyzing vesicle morphology by cryogenic electron microscopy (1 h) and vesicle cargoes by quantitative proteomics (4 h). Routinely, the whole procedure takes ~18–20 h of operation time and enables plant researchers without specific expertise to achieve organelle purification or vesicle reconstitution for further characterization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell wall digestion and protoplast preparation (Steps 2–4).
Fig. 2: Cell lysis for membrane and cytosol preparation (Steps 5–20).
Fig. 3: In vitro COPII vesicle reconstitution and negative staining for TEM observation (Steps 21–30).
Fig. 4: Sample preparation of reconstituted vesicles for cryo-EM and quantitative proteomic analysis (Steps 31–40).

Similar content being viewed by others

Data availability

Raw data needed to generate the figures presented in this work are available in the source data files. Source data are provided with this paper.

References

  1. Fries, E. & Rothman, J. E. Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc. Natl Acad. Sci. USA 77, 3870–3874 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beckers, C. J., Keller, D. S. & Balch, W. E. Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell 50, 523–534 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Baker, D., Hicke, L., Rexach, M., Schleyer, M. & Schekman, R. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell 54, 335–344 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Hicke, L. & Schekman, R. Yeast Sec23p acts in the cytoplasm to promote protein transport from the endoplasmic reticulum to the Golgi complex in vivo and in vitro. EMBO J. 8, 1677–1684 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Bednarek, S. Y. et al. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 83, 1183–1196 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rowe, T. et al. COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI. J. Cell Biol. 135, 895–911 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Aridor, M., Weissman, J., Bannykh, S., Nuoffer, C. & Balch, W. E. Cargo selection by the COPII budding machinery during export from the ER. J. Cell Biol. 141, 61–70 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melville, D., Gorur, A. & Schekman, R. Fatty-acid binding protein 5 modulates the SAR1 GTPase cycle and enhances budding of large COPII cargoes. Mol. Biol. Cell 30, 387–399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gorur, A. et al. COPII-coated membranes function as transport carriers of intracellular procollagen I. J. Cell Biol. 216, 1745–1759 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, X. W. et al. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife 2, e00444 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Merte, J. et al. Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat. Cell Biol. 12, 41–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Fromme, J. C. et al. The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev. Cell 13, 623–634 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boyadjiev, S. A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet. 38, 1192–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ma, T. et al. A mechanism for differential sorting of the planar cell polarity proteins Frizzled6 and Vangl2 at the trans-Golgi network. J. Biol. Chem. 293, 8410–8427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, Y. et al. An in vitro vesicle formation assay reveals cargo clients and factors that mediate vesicular trafficking. Proc. Natl Acad. Sci. U. S. A. 118, e2101287118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brier, L. W., Zhang, M. & Ge, L. Mechanistically dissecting autophagy: insights from in vitro reconstitution. J. Mol. Biol. 428, 1700–1713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adolf, F. et al. Proteomic profiling of mammalian COPII and COPI vesicles. Cell Rep. 26, 250–265.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Robinson, D. G., Brandizzi, F., Hawes, C. & Nakano, A. Vesicles versus tubes: is endoplasmic reticulum-Golgi transport in plants fundamentally different from other eukaryotes? Plant Physiol. 168, 393–406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chung, K. P., Zeng, Y. & Jiang, L. COPII paralogs in plants: functional redundancy or diversity? Trends Plant Sci. 21, 758–769 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Pimpl, P. et al. In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12, 2219–2236 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, B. et al. A distinct giant coat protein complex II vesicle population in Arabidopsis thaliana. Nat. Plants 7, 1335–1346 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Yokota, E. et al. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells. Plant Physiol. 156, 129–143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miao, Y. & Jiang, L. Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat. Protoc. 2, 2348–2353 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Hudson, R. T. & Draper, R. K. Interaction of coatomer with aminoglycoside antibiotics: evidence that coatomer has at least two dilysine binding sites. Mol. Biol. Cell 8, 1901–1910 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muniz, M., Morsomme, P. & Riezman, H. Protein sorting upon exit from the endoplasmic reticulum. Cell 104, 313–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Espenshade, P. J., Li, W. P. & Yabe, D. Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc. Natl Acad. Sci. U. S. A. 99, 11694–11699 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adolf, F., Rhiel, M., Reckmann, I. & Wieland, F. T. Sec24C/D-isoform-specific sorting of the preassembled ER-Golgi Q-SNARE complex. Mol. Biol. Cell 27, 2697–2707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, D. & Hay, J. C. Reconstitution of COPII vesicle fusion to generate a pre-Golgi intermediate compartment. J. Cell Biol. 167, 997–1003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hobman, T. C., Zhao, B., Chan, H. & Farquhar, M. G. Immunoisolation and characterization of a subdomain of the endoplasmic reticulum that concentrates proteins involved in COPII vesicle biogenesis. Mol. Biol. Cell 9, 1265–1278 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drakakaki, G. et al. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res. 22, 413–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Wattelet-Boyer, V. et al. Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat. Commun. 7, 12788 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bacia, K. et al. Multibudded tubules formed by COPII on artificial liposomes. Sci. Rep. 1, 17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zanetti, G. et al. The structure of the COPII transport-vesicle coat assembled on membranes. Elife 2, e00951 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Reynolds, G. D., August, B. & Bednarek, S. Y. Preparation of enriched plant clathrin-coated vesicles by differential and density gradient centrifugation. Methods Mol. Biol. 1209, 163–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Mosesso, N., Blaske, T., Nagel, M. K., Laumann, M. & Isono, E. Preparation of clathrin-coated vesicles from Arabidopsis thaliana seedlings. Front. Plant Sci. 9, 1972 (2018).

    Article  PubMed  Google Scholar 

  38. Dahhan, D. A. et al. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell 34, 2150–2173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, J. et al. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiol. 143, 1628–1639 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tse, Y. C. et al. Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16, 672–693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Schekman, A. Gorur and D. G. Robinson for critical suggestions; D. Inzé for the PSB-D suspension cultures; X. Wang for sharing experiences on fractionation and cytosol preparation; and Y. Chen for microscopic images. This work was supported by grants from the National Natural Science Foundation of China (91854201), the Research Grants Council of Hong Kong (CUHK14100818, 14101219, C4033-19E, C4002-17G, C4002-20W, C4002-21EF, C2009-19G, C4041-18E, R4005-18 and AoE/M-05/12), the CUHK Research Committee and CAS-Croucher Funding Scheme for Joint Laboratories to L.J.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and Y.Z. conceived and designed the study. B.L. and Y.Z. developed the protocol. B.L., Y.Z., S.W.L. and Y.G. performed the experiments. B.L. and Y.Z. wrote the manuscript. L.J. revised and edited the manuscript.

Corresponding author

Correspondence to Liwen Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Fernando Aniento, Liang Ge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol:

Li, B. et al. Nat. Plants 7, 1335–1346 (2021): https://doi.org/10.1038/s41477-021-00997-9

Supplementary information

Source data

Source Data Fig. 1

Uncropped confocal images for Fig. 1c

Source Data Fig. 2

Uncropped confocal images for Fig. 2b

Source Data Fig. 3

Uncropped TEM image for Fig. 3c

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zeng, Y., Lo, S.W. et al. In vitro reconstitution of COPII vesicles from Arabidopsis thaliana suspension-cultured cells. Nat Protoc 18, 810–830 (2023). https://doi.org/10.1038/s41596-022-00781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00781-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing