Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction

Abstract

Metal–organic frameworks (MOFs) have attracted considerable interest due to their well-defined pore architecture and structural tunability on molecular dimensions. While single-crystal X-ray diffraction (SCXRD) has been widely used to elucidate the structures of MOFs at the atomic scale, the formation of large and well-ordered crystals is still a crucial bottleneck for structure determination. To alleviate this challenge, three-dimensional electron diffraction (3D ED) has been developed for structure determination of nano- (submicron-)sized crystals. Such 3D ED data are collected from each single crystal using transmission electron microscopy. In this protocol, we introduce the entire workflow for structural analysis of MOFs by 3D ED, from sample preparation, data acquisition and data processing to structure determination. We describe methods for crystal screening and handling of crystal agglomerates, which are crucial steps in sample preparation for single-crystal 3D ED data collection. We further present how to set up a transmission electron microscope for 3D ED data acquisition and, more importantly, offer suggestions for the optimization of data acquisition conditions. For data processing, including unit cell and space group determination, and intensity integration, we provide guidelines on how to use electron and X-ray crystallography software to process 3D ED data. Finally, we present structure determination from 3D ED data and discuss the important features associated with 3D ED data that need to be considered. We believe that this protocol provides critical details for implementing and utilizing 3D ED as a structure determination platform for nano- (submicron-)sized MOFs as well as other crystalline materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for 3D ED structural analysis of nanosized MOFs using a standard TEM setup.
Fig. 2: Crystal handling and grid preparation.
Fig. 3: ED patterns obtained at different camera lengths defining the magnification of the diffraction pattern as set by the projector lenses.
Fig. 4: The data collection procedure.
Fig. 5: Low-magnification TEM images showing an overview of the crystal distribution on the grid.
Fig. 6: Procedures for bringing a crystal to the mechanical eucentric height.
Fig. 7: Example of crystal tracking using Instamatic.
Fig. 8: Reconstruction of 3D reciprocal space using REDp software.
Fig. 9: Data statistics produced by XDS.
Fig. 10: Comparison of peak integration.
Fig. 11: Hierarchical clustering analysis.
Fig. 12: An example SHELXT input file for structure solution of MOF CAU-3653.
Fig. 13: An example SHELXL input file for structure refinement of MOF CAU-36 (ref. 53).
Fig. 14: Electrostatic potential maps calculated based on the refinement of ZIF-EC1 against 3D ED data.

Similar content being viewed by others

Data availability

CCDC 1865990-1865999, 2004306, 2020844 and 2063952 contain the example crystallographic data as part of the supporting primary research publications. These data can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. Additional reasonable requests for data supporting this publication should be addressed to the corresponding authors.

Code availability

Reasonable requests for the code and scripts used in this publication should be addressed to the corresponding authors.

References

  1. Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).

    Article  CAS  Google Scholar 

  2. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  3. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metal–organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998).

    Article  CAS  Google Scholar 

  6. Li, Q. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Ma, S. & Zhou, H.-C. Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46, 44–53 (2010).

    Article  CAS  Google Scholar 

  8. Trickett, C. A. et al. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 1–16 (2017).

    Article  Google Scholar 

  9. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Duan, J., Jin, W. & Kitagawa, S. Water-resistant porous coordination polymers for gas separation. Coord. Chem. Rev. 332, 48–74 (2017).

    Article  CAS  Google Scholar 

  11. Bobbitt, N. S. et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 46, 3357–3385 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019).

    Article  CAS  Google Scholar 

  13. Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Xia, W., Mahmood, A., Zou, R. & Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015).

    Article  CAS  Google Scholar 

  15. Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Feng, D. et al. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

    Article  CAS  Google Scholar 

  17. Park, J. et al. High thermopower in a Zn-based 3D semiconductive metal–organic framework. J. Am. Chem. Soc. 142, 20531–20535 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Della Rocca, J., Liu, D. & Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Doonan, C., Riccò, R., Liang, K., Bradshaw, D. & Falcaro, P. Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc. Chem. Res. 50, 1423–1432 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Cichocka, M. O. et al. A porphyrinic zirconium metal–organic framework for oxygen reduction reaction: tailoring the spacing between active-sites through chain-based inorganic building units. J. Am. Chem. Soc. 142, 15386–15395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ge, M. et al. High-throughput electron diffraction reveals a hidden novel metal–organic framework for electrocatalysis. Angew. Chem. Int. Ed. 60, 11391–11397 (2021).

    Article  CAS  Google Scholar 

  23. Dorset, D. L. & Hauptman, H. A. Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. Ultramicroscopy 1, 195–201 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Dorset, D. L. Electron crystallography—accomplishments and challenges. Acta Crystallogr. A 54, 750–757 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Gemmi, M. et al. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 5, 1315–1329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gruene, T., Holstein, J. J., Clever, G. H. & Keppler, B. Establishing electron diffraction in chemical crystallography. Nat. Rev. Chem. 5, 660–668 (2021).

    Article  CAS  Google Scholar 

  27. Gruene, T. & Mugnaioli, E. 3D electron diffraction for chemical analysis: instrumentation developments and innovative applications. Chem. Rev. 121, 11823–11834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, Z., Willhammar, T. & Zou, X. Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond. Chem. Sci. 12, 1206–1219 (2021).

    Article  CAS  Google Scholar 

  29. Huang, Z., Grape, E. S., Li, J., Inge, A. K. & Zou, X. 3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coord. Chem. Rev. 427, 213583 (2021).

    Article  CAS  Google Scholar 

  30. Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. Towards automated diffraction tomography: Part I—data acquisition. Ultramicroscopy 107, 507–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kolb, U., Gorelik, T. & Otten, M. T. Towards automated diffraction tomography. Part II—cell parameter determination. Ultramicroscopy 108, 763–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Mugnaioli, E., Gorelik, T. & Kolb, U. “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109, 758–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. Collecting 3D electron diffraction data by the rotation method. Z. Krist. 225, 94–102 (2010).

    Article  CAS  Google Scholar 

  34. Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, J. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333, 1131–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Willhammar, T. et al. EMM-23: a stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels. J. Am. Chem. Soc. 136, 13570–13573 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Guo, P. et al. A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature 524, 74–78 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Birkel, C. S. et al. Solution synthesis of a new thermoelectric Zn1+xSb nanophase and its structure determination using automated electron diffraction tomography. J. Am. Chem. Soc. 132, 9881–9889 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Feyand, M. et al. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal–organic framework. Angew. Chem. Int. Ed. 51, 10373–10376 (2012).

    Article  CAS  Google Scholar 

  40. Cichocka, M. O., Ångström, J., Wang, B., Zou, X. & Smeets, S. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr. 51, 1652–1661 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Plana-Ruiz, S. et al. Fast-ADT: a fast and automated electron diffraction tomography setup for structure determination and refinement. Ultramicroscopy 211, 112951 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F. & Nicolopoulos, S. Fast electron diffraction tomography. J. Appl. Crystallogr. 48, 718–727 (2015).

    Article  CAS  Google Scholar 

  44. Nederlof, I., van Genderen, E., Li, Y.-W. & Abrahams, J. P. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr. D. 69, 1223–1230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Genderen, E. et al. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr. Sect. Found. Adv. 72, 236–242 (2016).

    Article  Google Scholar 

  46. Yuan, S. et al. [Ti8Zr2O12(COO)16] cluster: an ideal inorganic building unit for photoactive metal–organic frameworks. ACS Cent. Sci. 4, 105–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Hynek, J., Brázda, P., Rohlíček, J., Londesborough, M. G. S. & Demel, J. Phosphinic acid based linkers: building blocks in metal–organic framework chemistry. Angew. Chem. Int. Ed. 57, 5016–5019 (2018).

    Article  CAS  Google Scholar 

  48. Portolés-Gil, N. et al. Crystalline curcumin bioMOF obtained by precipitation in supercritical CO2 and structural determination by electron diffraction tomography. ACS Sustain. Chem. Eng. 6, 12309–12319 (2018).

    Article  Google Scholar 

  49. Lenzen, D. et al. A metal–organic framework for efficient water-based ultra-low-temperature-driven cooling. Nat. Commun. 10, 3025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Leubner, S. et al. Expanding the variety of zirconium-based inorganic building units for metal–organic frameworks. Angew. Chem. Int. Ed. 58, 10995–11000 (2019).

    Article  CAS  Google Scholar 

  51. Dou, J.-H. et al. Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nat. Mater. 20, 222–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Shi, D. et al. The collection of microED data for macromolecular crystallography. Nat. Protoc. 11, 895–904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, B. et al. A porous cobalt tetraphosphonate metal–organic framework: accurate structure and guest molecule location determined by continuous-rotation electron diffraction. Chem. Eur. J. 24, 17429–17433 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Samperisi, L. et al. Probing molecular motions in metal–organic frameworks by three-dimensional electron diffraction. J. Am. Chem. Soc. 143, 17947–17952 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao, C. et al. Isostructural three-dimensional covalent organic frameworks. Angew. Chem. Int. Ed. 58, 9770–9775 (2019).

    Article  CAS  Google Scholar 

  56. Sun, T., Wei, L., Chen, Y., Ma, Y. & Zhang, Y.-B. Atomic-level characterization of dynamics of a 3D covalent organic framework by cryo-electron diffraction tomography. J. Am. Chem. Soc. 141, 10962–10966 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Kapaca, E. et al. Synthesis and structure of a 22 × 12 × 12 extra-large pore zeolite ITQ-56 determined by 3D electron diffraction. J. Am. Chem. Soc. 143, 8713–8719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fröjdh, E. et al. Discrimination of aluminum from silicon by electron crystallography with the JUNGFRAU detector. Crystals 10, 1148 (2020).

    Article  Google Scholar 

  59. Seo, S. et al. Two aluminophosphate molecular sieves built from pairs of enantiomeric structural building units. Angew. Chem. Int. Ed. 57, 3727–3732 (2018).

    Article  CAS  Google Scholar 

  60. Huang, Z. et al. 3D–3D topotactic transformation in aluminophosphate molecular sieves and its implication in new zeolite structure generation. Nat. Commun. 11, 3762 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gruene, T. et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 57, 16313–16317 (2018).

    Article  CAS  Google Scholar 

  62. Jones, C. G. et al. The cryoEM method microED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Broadhurst, E. T. et al. Polymorph evolution during crystal growth studied by 3D electron diffraction. IUCrJ 7, 5–9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Broadhurst, E. T., Xu, H., Parsons, S. & Nudelman, F. Revealing the early stages of carbamazepine crystallization by cryoTEM and 3D electron diffraction. IUCrJ 8, (2021).

  65. Palatinus, L. et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 355, 166–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 364, 667–669 (2019).

    Article  PubMed  Google Scholar 

  67. Yang, L. et al. Ligand-directed conformational control over porphyrinic zirconium metal–organic frameworks for size-selective catalysis. J. Am. Chem. Soc. 143, 12129–12137 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Smeets, S., Wang, B. & Hogenbirk, E. Instamatic (2021); https://doi.org/10.5281/zenodo.1090388

  69. edtools — edtools 1.0.1 documentation; https://edtools.readthedocs.io/en/latest/

  70. Installation - XDSwiki; https://strucbio.biologie.uni-konstanz.de/xdswiki/index.php/Installation

  71. Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. Found. Adv. 71, 3–8 (2015).

    Article  Google Scholar 

  72. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Oracle VM VirtualBox; https://www.virtualbox.org/

  74. Install WSL; https://docs.microsoft.com/en-us/windows/wsl/install

  75. Palatinus, L. et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. B 75, 512–522 (2019).

    Article  CAS  Google Scholar 

  76. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. Sect. Struct. Biol. 74, 85–97 (2018).

    Article  CAS  Google Scholar 

  77. CrysAlis Pro | Rigaku global website; https://www.rigaku.com/products/crystallography/crysalis

  78. Burla, M. C. et al. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 48, 306–309 (2015).

    Article  CAS  Google Scholar 

  79. Petříček, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Krist. Cryst. Mater. 229, 345–352 (2014).

    Article  Google Scholar 

  80. Palatinus, L., Petříček, V. & Corrêa, C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. Sect. Found. Adv. 71, 235–244 (2015).

    Article  CAS  Google Scholar 

  81. Roslova, M. et al. InsteaDMatic: towards cross-platform automated continuous rotation electron diffraction. J. Appl. Crystallogr. 53, 1217–1224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mugnaioli, E. & Gemmi, M. Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline. Z. Krist. Cryst. Mater. 233, 163–178 (2018).

    Article  CAS  Google Scholar 

  83. Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smeets, S., Wang, B. & Hogenbirk, E. instamatic-dev/instamatic: 1.7.0 (Zenodo, 2021); https://doi.org/10.5281/zenodo.5175957

  85. Wang, B., Zou, X. & Smeets, S. Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination. IUCrJ 6, 854–867 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de la Cruz, M. J., Martynowycz, M. W., Hattne, J. & Gonen, T. MicroED data collection with SerialEM. Ultramicroscopy 201, 77–80 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yonekura, K., Ishikawa, T. & Maki-Yonekura, S. A new cryo-EM system for electron 3D crystallography by eEFD. J. Struct. Biol. 206, 243–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Carragher, B. et al. Leginon: An automated system for acquisition of images from vitreous ice specimens. J. Struct. Biol. 132, 33–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Electron Microscopy | Software Updates - SE; http://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/software-updates.html

  90. cctbx - Determination of lattice symmetry; http://cci.lbl.gov/cctbx/lattice_symmetry.html

  91. Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. The Computational Crystallography Toolbox: crystallographic algorithms in a reusable software framework. J. Appl. Crystallogr. 35, 126–136 (2002).

    Article  CAS  Google Scholar 

  92. xds; https://xds.mr.mpg.de/html_doc/xds_prepare.html

  93. Xu, H. XDS input template for 3D ED/MicroED data processing. (2021); https://doi.org/10.5281/zenodo.5574261

  94. Doyle, P. A. & Turner, P. S. Relativistic Hartree–Fock X-ray and electron scattering factors. Acta Crystallogr. A 24, 390–397 (1968).

    Article  CAS  Google Scholar 

  95. Peng, L.-M. Electron scattering factors of ions and their parameterization. Acta Crystallogr. A 54, 481–485 (1998).

    Article  Google Scholar 

  96. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  97. FAES: Factors of Atomic Electron Scattering; https://srv.mbi.ucla.edu/faes/

  98. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. International Tables for Crystallography. C: Mathematical, Physical and Chemical Tables (ed. Prince, E.) (Kluwer Academic, 2004).

  100. CheckCIF; https://checkcif.iucr.org/

  101. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).

    Article  CAS  Google Scholar 

  102. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. E 76, 1–11 (2020).

    Article  CAS  Google Scholar 

  103. Case: Electron Diffraction Data in the CSD - The Cambridge Crystallographic Data Centre (CCDC); https://www.ccdc.cam.ac.uk/support-and-resources/support/case/?caseid=ceb813f7-aca7-e911-8cce-005056975d8a

  104. Wang, Y., Yang, T., Xu, H., Zou, X. & Wan, W. On the quality of the continuous rotation electron diffraction data for accurate atomic structure determination of inorganic compounds. J. Appl. Crystallogr. 51, 1094–1101 (2018).

    Article  CAS  Google Scholar 

  105. Huang, Z. et al. Can 3D electron diffraction provide accurate atomic structures of metal–organic frameworks? Faraday Discuss. 225, 118–132 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Latitude D software | Gatan; https://www.gatan.com/products/tem-imaging-spectroscopy/latitude-d-software

  107. Ge, M. et al. On the completeness of three-dimensional electron diffraction data for structural analysis of metal–organic frameworks. Faraday Discuss. 231, 66–80 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish research council Formas (2020-00831 to Z.H.), the Swedish Research Council (VR 2016-04625 to Z.H., VR 2017-04321 and 2019-00815 to X.Z., VR 2017-05333 to H.X. and VR 2019-05465 to T.W.), the Knut and Alice Wallenberg Foundation (2012.0112 and 2018.0237 to X.Z.) and the MicroED@SciLifeLab project (H.X.)

Author information

Authors and Affiliations

Authors

Contributions

T.Y., T.W., H.X., X.Z. and Z.H. wrote the manuscript. Z.H. initiated this manuscript. All authors read, discussed and approved the manuscript.

Corresponding authors

Correspondence to Hongyi Xu, Xiaodong Zou or Zhehao Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Jessica Bruhn, Russell E. Morris and Enrico Mugnaioli for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ge, M. et al. Angew. Chem. Int. Ed. 60, 11391–11397 (2021): https://doi.org/10.1002/anie.202016882

Samperisi, L. et al. J. Am. Chem. Soc. 143, 17947–17952 (2021): https://doi.org/10.1021/jacs.1c08354

Cichocka, M. O. et al. J. Am. Chem. Soc. 142, 15386–15395 (2020): https://doi.org/10.1021/jacs.0c06329

Yuan, S. et al. ACS Cent. Sci. 4, 105–111 (2018): https://doi.org/10.1021/acscentsci.7b00497

Wang, B. et al. Chem. Eur. J. 24, 17429–17433 (2018): https://doi.org/10.1002/chem.201804133

Key data used in this protocol

Wang, B. et al. Chem. Eur. J. 24, 17429–17433 (2018): https://doi.org/10.1002/chem.201804133

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Willhammar, T., Xu, H. et al. Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction. Nat Protoc 17, 2389–2413 (2022). https://doi.org/10.1038/s41596-022-00720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00720-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing