Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment

Abstract

In many parts of the world, human-mediated environmental change is depleting biodiversity faster than it can be characterized, while invasive species cause agricultural damage, threaten human health and disrupt native habitats. Consequently, the application of effective approaches for rapid surveillance and identification of biological specimens is increasingly important to inform conservation and biosurveillance efforts. Taxonomic assignments have been greatly advanced using sequence-based applications, such as DNA barcoding, a diagnostic technique that utilizes PCR and DNA sequence analysis of standardized genetic regions. However, in many biodiversity hotspots, endeavors are often hindered by a lack of laboratory infrastructure, funding for biodiversity research and restrictions on the transport of biological samples. A promising development is the advent of low-cost, miniaturized scientific equipment. Such tools can be assembled into functional laboratories to carry out genetic analyses in situ, at local institutions, field stations or classrooms. Here, we outline the steps required to perform amplicon sequencing applications, from DNA isolation to nanopore sequencing and downstream data analysis, all of which can be conducted outside of a conventional laboratory environment using miniaturized scientific equipment, without reliance on Internet connectivity. Depending on sample type, the protocol (from DNA extraction to full bioinformatic analyses) can be completed within 10 h, and with appropriate quality controls can be used for diagnostic identification of samples independent of core genomic facilities that are required for alternative methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of equipment used to carry out field-deployed DNA amplicon sequencing.
Fig. 2: Illustration of the steps involved in the laboratory part of the protocol.
Fig. 3: Illustration of the steps involved in the bioinformatic part of the protocol.

Similar content being viewed by others

Data availability

Example data files can be found in the Supplementary Information.

Code availability

The code used can be found on the NGSpeciesID GitHub page: https://github.com/ksahlin/NGSpeciesID. The code in this protocol has been peer reviewed.

References

  1. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270, S96–S99 (2003).

    Article  CAS  Google Scholar 

  6. Ratnasingham, S. & Hebert, P. bold: The Barcode of Life Data System. Mol. Ecol. Notes 7, 355–364 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mizrachi, I. Chapter 1: GenBank: The Nucleotide Sequence Database (NCBI, 2013); https://www.ncbi.nlm.nih.gov/books/NBK470040/

  8. Shokralla, S. et al. Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Sci. Rep. 5, 9687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 22, 75–100 (2020).

    Article  Google Scholar 

  10. Krehenwinkel, H., Pomerantz, A. & Prost, S. Genetic biomonitoring and biodiversity assessment using portable sequencing technologies: current uses and future directions. Genes 10, 858 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  11. Menegon, M. et al. On site DNA barcoding by nanopore sequencing. PLoS ONE 12, e0184741 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience 7, giy033 (2018).

  13. Blanco, M. B. et al. Next-generation technologies applied to age-old challenges in Madagascar. Conserv. Genet. 21, 785–793 (2020).

    Article  Google Scholar 

  14. Chang, J. J. M., Ip, Y. C. A., Ng, C. S. L. & Huang, D. Takeaways from mobile DNA barcoding with BentoLab and MinION. Genes 11, 1121 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  15. Johnson, S. S., Zaikova, E., Goerlitz, D. S., Bai, Y. & Tighe, S. W. Real-time DNA sequencing in the Antarctic Dry Valleys using the Oxford Nanopore Sequencer. J. Biomol. Tech. 28, 2–7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faria, N. R. et al. Mobile real-time surveillance of Zika virus in Brazil. Genome Med. 8, 97 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Watsa, M., Erkenswick, G. A., Pomerantz, A. & Prost, S. Portable sequencing as a teaching tool in conservation and biodiversity research. PLoS Biol. 18, e3000667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salazar, A. N. et al. An educational guide for nanopore sequencing in the classroom. PLoS Comput. Biol. 16, e1007314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research 6, 1–32 (2017).

    Article  Google Scholar 

  22. Wick, R. R., Judd, L. M. & Holt, K. E. Deepbinner: demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput. Biol. 14, e1006583 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. Gigascience 8, giz006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biol. 17, 96 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vasiljevic, N. et al. Developmental validation of Oxford Nanopore Technology MinION sequence data and the NGSpeciesID bioinformatic pipeline for forensic genetic species identification. Forensic Sci. Int. Genet. 53, 102493 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Maestri, S. et al. A rapid and accurate MinION-based workflow for tracking species biodiversity in the field. Genes 10, 468 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  27. Seah, A., Lim, M. C. W., McAloose, D., Prost, S. & Seimon, T. A. MinION-based DNA barcoding of preserved and non-invasively collected wildlife samples. Genes 11, 445 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  28. Srivathsan, A. et al. MinION barcodes: biodiversity discovery and identification by everyone, for everyone. Preprint at BioRxiv https://doi.org/10.1101/2021.03.09.434692 (2021).

  29. Atkins, P. A. P., Gamo, M. E. S. & Voytas, D. F. Analyzing plant gene targeting outcomes and conversion tracts with nanopore sequencing. Int. J. Mol. Sci. 22, 9723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simmons, D. R. et al. The Collection of Zoosporic Eufungi at the University of Michigan (CZEUM): introducing a new repository of barcoded Chytridiomyceta and Blastocladiomycota cultures. IMA Fungus 11, 20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sahlin, K., Lim, M. C. W. & Prost, S. NGSpeciesID: DNA barcode and amplicon consensus generation from long-read sequencing data. Ecol. Evol. 11, 1392–1398 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Taberlet, P. et al. Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Dieffenbach, C. W., Lowe, T. M. & Dveksler, G. S. General concepts for PCR primer design. Genome Res. 3, S30–S37 (1993).

    Article  CAS  Google Scholar 

  34. Singh, V. & Kumar, A. PCR primer design. Mol. Biol. Today 2, 27–32 (2001).

    CAS  Google Scholar 

  35. Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).

    Article  CAS  Google Scholar 

  37. Bohmann, K. et al. Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol. Ecol. Res. 00, 1–16 (2021).

    Google Scholar 

  38. Smyth, R. P. et al. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene 469, 45–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Zizka, V. M. A., Elbrecht, V., Macher, J.-N. & Leese, F. Assessing the influence of sample tagging and library preparation on DNA metabarcoding. Mol. Ecol. Resour. 19, 893–899 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Arulandhu, A. J. et al. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. Gigascience 6, gix080 (2017).

    Article  Google Scholar 

  41. Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated—reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Lange, V. et al. Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics 15, 63 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Labrador, K., Agmata, A., Palermo, J. D., Follante, J. & Pante, Ma. J. Authentication of processed Philippine sardine products using Hotshot DNA extraction and minibarcode amplification. Food Control 98, 150–155 (2019).

    Article  CAS  Google Scholar 

  44. Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT). BioTechniques 29, 52–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Knot, I. E., Zouganelis, G. D., Weedall, G. D., Wich, S. A. & Rae, R. DNA barcoding of nematodes using the MinION. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00100 (2020).

  46. Wurzbacher, C. et al. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19, 118–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Wilson, B. D., Eisenstein, M. & Soh, H. T. High-fidelity nanopore sequencing of ultra-short DNA targets. Anal. Chem. 91, 6783–6789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cornelis, S., Gansemans, Y., Deleye, L., Deforce, D. & Van Nieuwerburgh, F. Forensic SNP Genotyping using Nanopore MinION Sequencing. Sci. Rep. 7, 41759 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Srivathsan, A. et al. A MinIONTM-based pipeline for fast and cost-effective DNA barcoding. Mol. Ecol. Resour. 18, 1035–1049 (2018).

    Article  CAS  Google Scholar 

  50. Sahlin, K. & Medvedev, P. in Research in Computational Molecular Biology (ed. Cowen, L. J.) 227–242 (Springer, 2019).

  51. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Daily, J. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments. BMC Bioinform. 17, 81 (2016).

    Article  CAS  Google Scholar 

  53. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Byagathvalli, G., Pomerantz, A., Sinha, S., Standeven, J. & Bhamla, M. S. A 3D-printed hand-powered centrifuge for molecular biology. PLoS Biol. 17, e3000251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Madden, T. Appendices. BLAST Command Line Applications User Manual [Internet] (Bethesda (MD): National Center for Biotechnology Information (US, 2021); https://www.ncbi.nlm.nih.gov/books/NBK279684/

  56. Watsa, M., Wildlife Disease Surveillance Focus Group. Rigorous wildlife disease surveillance. Science 369, 145–147 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Comai for the adjustment of the barcode_generator tool to work for our MinION indexing protocol. We thank ONT for providing technical support, and for making the offline MinKNOW software available to us. We also thank H. Asahara and the UC Berkeley DNA Sequencing Facility for technical support. We thank Tropical Herping, Rainforest Expeditions, Field Projects International and the Inkaterra Guides Field Station for support during fieldwork.

Author information

Authors and Affiliations

Authors

Contributions

A.P., N.V., A.S., E.H., S.K., H.K., S.W., R.O. and S.P. optimized and further developed the laboratory protocols. A.P. and S.P. tested and validated the approach and equipment in the field. K.S., M.L. and S.P. developed and validated the bioinformatics processing pipeline. R.O. and S.P. conceived the project. All authors wrote the manuscript and approved the contents of the manuscript.

Corresponding author

Correspondence to Stefan Prost.

Ethics declarations

Competing interests

A.P. became an employee of ONT PLC after the completion of the research described in the paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Simon Creer, Sujeevan Ratnasingham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Pomerantz, A. et al. Gigascience 7, giy033 (2018): https://doi.org/10.1093/gigascience/giy033

Sahlin, K. et al. Ecol. Evol. 11, 1392–1398 (2021): https://doi.org/10.1002/ece3.7146

Vasiljevic, N. et al. Forensic Sci. Int. Genet. 53, 102493 (2021): https://doi.org/10.1016/j.fsigen.2021.102493

Supplementary information

Reporting Summary

Supplementary Data 1

An example MinION reads dataset generated using the outlined protocol (3,000 reads). The file contains reads of three fish species: the Atlantic cod (Gadus morhua), the Haddock (Melanogrammus aeglefinus) and the Whiting (Merlangius merlangus), sequenced on a Flongle flow cell. This is previously unpublished data.

Supplementary Data 2

An example index file for demultiplexing with minibar (can be used to demultiplex the example read data in Supplementary Data 1).

Supplementary Data 3

An example file of the primer sequences in fasta format (can be used for primer removal using NGSpeciesID).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomerantz, A., Sahlin, K., Vasiljevic, N. et al. Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment. Nat Protoc 17, 1415–1443 (2022). https://doi.org/10.1038/s41596-022-00682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00682-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing