Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Protein transfection via spherical nucleic acids

Subjects

Abstract

The efficient transfection of functional proteins into cells can serve as a means for regulating cellular processes toward solving fundamental challenges in biology and medicine. However, the use of proteins as effective intracellular agents is hindered by their low cellular uptake and susceptibility to degradation. Over the past 15 years, our group has been developing spherical nucleic acids (SNAs), nanoparticles functionalized with a dense radially oriented shell of nucleic acids. These structures actively enter cells and have opened new frontiers in chemical sensing, biodiagnostics and therapeutics. Recently, we have shown that proteins can be used as structurally precise and homogeneous nanoparticle cores in SNAs. The resultant protein SNAs (ProSNAs) allow previously cell-impermeable proteins to actively enter cells, exhibit high degrees of stability and activity both in cell culture and in vivo, and show enhanced pharmacokinetics. Consequently, these modular structures constitute a plug-and-play platform in which the protein core and nucleic acid shell can be independently varied to achieve a desired function. Here, we describe the synthesis of ProSNAs through the chemical modification of solvent-accessible surface residues (3–5 d). We also discuss design considerations, strategies for characterization, and applications of ProSNAs in cellular transfection, biological sensing and functional enzyme delivery in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis, purification and characterization of ProSNAs.
Fig. 2: Two-step assay for glucose detection.
Fig. 3: Working principle for ONPG-based β-Gal activity assay.
Fig. 4: Working principle of X-Gal assay for measuring β-Gal activity.
Fig. 5: Working principle of fluorescence-based assay for measuring β-Gal activity.
Fig. 6: Characterization of ProSNAs.
Fig. 7: Uptake and activity of β-Gal SNAs in cell culture.
Fig. 8: Validation of a GOx SNA-based two-step assay for detection of glucose.
Fig. 9: Biodistribution and activity of ProSNAs in vivo.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers (https://doi.org/10.1021/jacs.0c06866, https://doi.org/10.1021/jacs.5b09711, and https://doi.org/10.1021/acscentsci.0c00313). Raw data for the figures shown can be obtained from the corresponding author upon reasonable request.

References

  1. Lee, D., Redfern, O. & Orengo, C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 995–1005 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Leader, B., Baca, Q. J. & Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7, 21–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Krejsa, C., Rogge, M. & Sadee, W. Protein therapeutics: new applications for pharmacogenetics. Nat. Rev. Drug Discov. 5, 507–521 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Nasu, Y., Shen, Y., Kramer, L. & Campbell, R. E. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17, 509–518 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Welch, C. M., Elliott, H., Danuser, G. & Hahn, K. M. Imaging the coordination of multiple signalling activities in living cells. Nat. Rev. Mol. Cell Biol. 12, 749–756 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Fu, A., Tang, R., Hardie, J., Farkas, M. E. & Rotello, V. M. Promises and pitfalls of intracellular delivery of proteins. Bioconjug. Chem. 25, 1602–1608 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stewart, M. P., Langer, R. & Jensen, K. F. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frokjaer, S. & Otzen, D. E. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov. 4, 298–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Brodin, J. D., Sprangers, A. J., McMillan, J. R. & Mirkin, C. A. DNA-mediated cellular delivery of functional enzymes. J. Am. Chem. Soc. 137, 14838–14841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kusmierz, C. D., Bujold, K. E., Callmann, C. E. & Mirkin, C. A. Defining the design parameters for in vivo enzyme delivery through protein spherical nucleic acids. ACS Cent. Sci. 6, 815–822 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Samanta, D., Ebrahimi, S. B., Kusmierz, C. D., Cheng, H. F. & Mirkin, C. A. Protein spherical nucleic acids for live-cell chemical analysis. J. Am. Chem. Soc. 142, 13350–13355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for infracellular gene regulation. Science 312, 1027–1030 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Cutler, J. I., Auyeung, E. & Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5, 209ra152 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shi, L. et al. Light‐induced self‐escape of spherical nucleic acid from endo/lysosome for efficient non‐cationic gene delivery. Angew. Chem. Int. Ed. 59, 19168–19174 (2020).

    Article  CAS  Google Scholar 

  18. Radovic-Moreno, A. F. et al. Immunomodulatory spherical nucleic acids. Proc. Natl Acad. Sci. USA 112, 3892–3897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seferos, D. S., Giljohann, D. A., Hill, H. D., Prigodich, A. E. & Mirkin, C. A. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129, 15477–15479 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ebrahimi, S., Samanta, D. & Mirkin, C. DNA-based nanostructures for live-cell analysis. J. Am. Chem. Soc. 142, 11343–11356 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Conde, J., Oliva, N. & Artzi, N. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proc. Natl Acad. Sci. USA 112, E1278–E1287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Samanta, D., Ebrahimi, S. B. & Mirkin, C. A. Nucleic‐acid structures as intracellular probes for live cells. Adv. Mater. 32, 1901743 (2020).

    Article  CAS  Google Scholar 

  23. Yan, J., Tan, Y.-L., Lin, M., Xing, H. & Jiang, J.-H. A DNA-mediated crosslinking strategy to enhance cellular delivery and sensor performance of protein spherical nucleic acids. Chem. Sci. 12, 1803–1809 (2021).

    Article  CAS  Google Scholar 

  24. Mirkin, C. A., Laramy, C. & Skakuj, K. The power of spheres. Nature 576, S3–S7 (2019).

    Article  CAS  Google Scholar 

  25. Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    Article  CAS  Google Scholar 

  26. Winegar, P. H. et al. DNA-directed protein packing within single crystals. Chem 6, 1007–1017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, M. et al. Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. Nat. Protoc. 16, 383–404 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, X. A., Choi, C. H. J., Zhang, C., Hao, L. & Mirkin, C. A. Intracellular fate of spherical nucleic acid nanoparticle conjugates. J. Am. Chem. Soc. 136, 7726–7733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prigodich, A. E. et al. Nano-flares for mRNA regulation and detection. ACS Nano 3, 2147–2152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yeo, D. C., Wiraja, C., Paller, A. S., Mirkin, C. A. & Xu, C. Abnormal scar identification with spherical-nucleic-acid technology. Nat. Biomed. Eng. 2, 227–238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qiu, L. et al. A targeted, self-delivered, and photocontrolled molecular beacon for mRNA detection in living cells. J. Am. Chem. Soc. 135, 12952–12955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rajendran, L., Knölker, H.-J. & Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 9, 29–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. McNaughton, B. R., Cronican, J. J., Thompson, D. B. & Liu, D. R. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc. Natl Acad. Sci. USA 106, 6111–6116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwarze, S. R. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Yan, M. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 5, 48–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Fuhrmann, G. et al. Sustained gastrointestinal activity of dendronized polymer–enzyme conjugates. Nat. Chem. 5, 582–589 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Gu, Z., Biswas, A., Zhao, M. & Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 40, 3638 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, M. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl Acad. Sci. USA 113, 2868–2873 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. D’Astolfo, D. S. et al. Efficient intracellular delivery of native proteins. Cell 161, 674–690 (2015).

    Article  PubMed  Google Scholar 

  40. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Giljohann, D. A. et al. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett. 7, 3818–3821 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, H. et al. Molecular spherical nucleic acids. Proc. Natl Acad. Sci. USA 115, 4340–4344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ebrahimi, S. B., Samanta, D., Cheng, H. F., Nathan, L. I. & Mirkin, C. A. Forced intercalation (FIT)-aptamers. J. Am. Chem. Soc. 141, 13744–13748 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ebrahimi, S. B. et al. Programming fluorogenic DNA probes for rapid detection of steroids. Angew. Chem. Int. Ed. 60, 15260–15265 (2021).

    Article  CAS  Google Scholar 

  46. Daniel, K. B., Agrawal, A., Manchester, M. & Cohen, S. M. Readily accessible fluorescent probes for sensitive biological imaging of hydrogen peroxide. Chembiochem 14, 593–598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Young Kim, H., Young Yum, S., Jang, G. & Ahn, D.-R. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Sci. Rep. 5, 11719 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chang, J. et al. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing. Acc. Chem. Res. 52, 665–675 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Futami, J. et al. Intracellular delivery of proteins into mammalian living cells by polyethylenimine-cationization. J. Biosci. Bioeng. 99, 95–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Murata, H. et al. Intracellular delivery of glutathione S-transferase-fused proteins into mammalian cells by polyethylenimine–glutathione conjugates. J. Biochem. 144, 447–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Lackey, C. A., Press, O. W., Hoffman, A. S. & Stayton, P. S. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug. Chem. 13, 996–1001 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Murata, H. et al. Transient cell proliferation with polyethylenimine-cationized N-terminal domain of simian virus 40 large T-antigen. J. Biosci. Bioeng. 105, 34–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Luan, X. et al. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 38, 754–763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao, X. et al. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed. Pharmacother. 128, 110237 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Gonda, A., Kabagwira, J., Senthil, G. N. & Wall, N. R. Internalization of exosomes through receptor-mediated endocytosis. Mol. Cancer Res. 17, 337–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Thompson, D. B., Cronican, J. J. & Liu, D. R. Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 503, 293–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, Y.-W. et al. Protein delivery into the cell cytosol using non-viral nanocarriers. Theranostics 9, 3280–3292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, K. Y. & Yuk, S. H. Polymeric protein delivery systems. Prog. Polym. Sci. 32, 669–697 (2007).

    Article  CAS  Google Scholar 

  59. Lv, J., Fan, Q., Wang, H. & Cheng, Y. Polymers for cytosolic protein delivery. Biomaterials 218, 119358 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Pawelec, K. M., White, A. A. & Best, S. M. Properties and characterization of bone repair materials. in Bone Repair Biomaterials 65–102 (Elsevier, 2019). https://doi.org/10.1016/B978-0-08-102451-5.00004-4

  61. Zhao, H. et al. Polymer-based nanoparticles for protein delivery: design, strategies and applications. J. Mater. Chem. B 4, 4060–4071 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Martins, S., Sarmento, B., Ferreira, D. C. & Souto, E. B. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int. J. Nanomed. 2, 595–607 (2007).

    CAS  Google Scholar 

  63. Cui, S. et al. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol. Res. 7, 473–479 (2018).

    Article  CAS  Google Scholar 

  64. Qin, X. et al. Rational design of nanocarriers for intracellular protein delivery. Adv. Mater. 31, 1902791 (2019).

    Article  CAS  Google Scholar 

  65. Conde, J. et al. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2, 48 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Trifonov, S., Yamashita, Y., Kase, M., Maruyama, M. & Sugimoto, T. Overview and assessment of the histochemical methods and reagents for the detection of β-galactosidase activity in transgenic animals. Anat. Sci. Int. 91, 56–67 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based on research sponsored by Air Force Office of Scientific Research award FA9550-17-1-0348 and Air Force Research Laboratory agreement FA8650-15-2-5518. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government. S.B.E. was supported in part by the Chicago Cancer Baseball Charities and the H Foundation at the Lurie Cancer Center of Northwestern University. We acknowledge all former group members who contributed to the development of the methods described in this protocol.

Author information

Authors and Affiliations

Authors

Contributions

S.B.E. and D.S. contributed equally. All authors contributed to the development of the protocol and the design of the experiments. All authors wrote and approved the manuscript.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Lele Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Brodin, J. D. et al. J. Am. Chem. Soc. 137, 14838–14841 (2015): https://doi.org/10.1021/jacs.5b09711

Kusmierz, C. D. et al. ACS Cent. Sci. 6, 815–822 (2020): https://doi.org/10.1021/acscentsci.0c00313

Samanta, D. et al. J. Am. Chem. Soc. 142, 13350–13355 (2020): https://doi.org/10.1021/jacs.0c06866

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S.B., Samanta, D., Kusmierz, C.D. et al. Protein transfection via spherical nucleic acids. Nat Protoc 17, 327–357 (2022). https://doi.org/10.1038/s41596-021-00642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00642-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing