Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Perfusion and endothelialization of engineered tissues with patterned vascular networks

Abstract

As engineered tissues progress toward therapeutically relevant length scales and cell densities, it is critical to deliver oxygen and nutrients throughout the tissue volume via perfusion through vascular networks. Furthermore, seeding of endothelial cells within these networks can recapitulate the barrier function and vascular physiology of native blood vessels. In this protocol, we describe how to fabricate and assemble customizable open-source tissue perfusion chambers and catheterize tissue constructs inside them. Human endothelial cells are seeded along the lumenal surfaces of the tissue constructs, which are subsequently connected to fluid pumping equipment. The protocol is agnostic with respect to biofabrication methodology as well as cell and material composition, and thus can enable a wide variety of experimental designs. It takes ~14 h over the course of 3 d to prepare perfusion chambers and begin a perfusion experiment. We envision that this protocol will facilitate the adoption and standardization of perfusion tissue culture methods across the fields of biomaterials and tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Customizable open-source chambers for sterile perfusion culture.
Fig. 2: Geometric and mechanical requirements for catheterization and perfusion protocol.
Fig. 3: Fabrication and assembly guide for custom perfusion chambers.
Fig. 4: Achieving uniform endothelialization in perfusable networks of cylindrical vessels.
Fig. 5: Assembly guide for connecting vascularized gels for sterile perfusion.
Fig. 6: Establishing a sterile fluidic connection for perfusion culture.
Fig. 7: Potential pitfalls encountered during endothelialization and perfusion.
Fig. 8: Endothelial cells form confluent monolayers within vascular networks under perfusion.

Similar content being viewed by others

Data availability

STL files for the 3D printed perfusion chambers shown in Figs. 1 and 3 are available at https://github.com/MillerLabFTW/Perfusion. Raw imaging data for the microscopy images presented are available from the corresponding author.

Code availability

The openSCAD script for generating perfusion chambers is available at https://github.com/MillerLabFTW/Perfusion under a GNU General Public License and will be maintained and updated in that repository. In Supplementary Software 1, we also provide the MATLAB script used to analyze endothelial cell coverage.

References

  1. Tien, J. Microfluidic approaches for engineering vasculature. Curr. Opin. Chem. Eng. 3, 36–41 (2014).

    Article  Google Scholar 

  2. Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 16, 2025–2043 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Miller, J. S. The billion cell construct: will three-dimensional printing get us there? PLoS Biol. 12, e1001882 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, B. & Radisic, M. Organ-level vascularization: the Mars mission of bioengineering. J. Thorac. Cardiovasc. Surg. 159, 2003–2007 (2020).

    Article  PubMed  Google Scholar 

  5. Xie, R., Zheng, W., Guan, L., Ai, Y. & Liang, Q. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small 16, e1902838 (2019).

    Article  PubMed  Google Scholar 

  6. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kinstlinger, I. S. et al. Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. Nat. Biomed. Eng. 4, 916–932 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Mori, N., Akagi, Y., Imai, Y., Takayama, Y. & Kida, Y. S. Fabrication of perfusable vascular channels and capillaries in 3D liver-like tissue. Sci. Rep. 10, 5646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galie, P. A. et al. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl Acad. Sci. USA 111, 7968–7973 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Polacheck, W. J. et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552, 258–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med 6, 16–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Chrobak, K. M., Potter, D. R. & Tien, J. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res 71, 185–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342–9347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mandrycky, C., Hadland, B. & Zheng, Y. 3D curvature-instructed endothelial flow response and tissue vascularization. Sci. Adv. 6, eabb3629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Temiz, Y., Lovchik, R. D., Kaigala, G. V. & Delamarche, E. Lab-on-a-chip devices: how to close and plug the lab? Microelectron. Eng. 132, 156–175 (2015).

    Article  CAS  Google Scholar 

  20. Maoz, B. M. et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36, 865–877 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gray, B. L. et al. Novel interconnection technologies for integrated microfluidic systems. Sens. Actuators A Phys 77, 57–65 (1999).

    Article  CAS  Google Scholar 

  23. Chen, C. F. et al. High-pressure needle interface for thermoplastic microfluidics. Lab Chip 9, 50–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, R. & Larsen, N. B. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab Chip 17, 4273–4282 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Anandakrishnan, N. et al. Fast stereolithography printing of large-scale biocompatible hydrogel models. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202002103 (2021).

  26. Ouyang, L., Armstrong, J. P. K., Chen, Q., Lin, Y. & Stevens, M. M. Void-free 3D bioprinting for in situ endothelialization and microfluidic perfusion. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201908349 (2019).

  27. Song, K. H., Highley, C. B., Rouff, A. & Burdick, J. A. Complex 3D-printed microchannels within cell-degradable hydrogels. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201801331 (2018).

  28. Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Tocchio, A. et al. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Biomaterials 45, 124–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, V. K. et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35, 8092–8102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sawyer, S. W., Zhang, K., Horton, J. A. & Soman, P. Perfusion-based co-culture model system for bone tissue engineering. AIMS Bioeng. 7, 91–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mao, M. et al. Human-on-leaf-chip: a biomimetic vascular system integrated with chamber-specific organs. Small 16, e2000546 (2020).

    Article  PubMed  Google Scholar 

  33. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods. 16, 255–262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qiu, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng 2, 453–463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Udan, R. S., Vadakkan, T. J. & Dickinson, M. E. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 140, 4041–4050 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koike, N. et al. Tissue engineering: creation of long-lasting blood vessels. Nature 428, 138–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moon, J. J. et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31, 3840–3847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moya, M. L., Hsu, Y.-H., Lee, A. P., Hughes, C. C. W. & George, S. C. In vitro perfused human capillary networks. Tissue Eng. Part C Methods 19, 730–737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, Y. Y., Kingston, B. R. & Chan, W. C. W. Transcribing in vivo blood vessel networks into in vitro perfusable microfluidic devices. Adv. Mater. Technol. 5, 2000103 (2020).

    Article  CAS  Google Scholar 

  42. Radisic, M. et al. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93, 332–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Brown, D. A. et al. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol. Bioeng. 97, 962–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Cheema, U., Brown, R. A., Alp, B. & MacRobert, A. J. Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cell Mol. Life Sci. 65, 177–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Lewis, M. C., MacArthur, B. D., Malda, J., Pettet, G. & Please, C. P. Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol. Bioeng. 91, 607–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Demol, J., Lambrechts, D., Geris, L., Schrooten, J. & Van Oosterwyck, H. Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels. Biomaterials 32, 107–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Hillebrandt, K. H. et al. Strategies based on organ decellularization and recellularization. Transpl. Int. 32, 571–585 (2019).

    PubMed  Google Scholar 

  48. Guyette, J. P. et al. Perfusion decellularization of whole organs. Nat. Protoc. 9, 1451–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Zheng, Y., Chen, J. & López, J. A. Microvascular platforms for the study of platelet-vessel wall interactions. Thromb. Res. 133, 525–531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arakawa, C. et al. Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. Sci. Adv. 6, eayy7243 (2020).

    Article  Google Scholar 

  51. Zhang, B. & Radisic, M. Organ-on-a-chip devices advance to market. Lab Chip 17, 2395–2420 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Sontheimer-Phelps, A., Hassell, B. A. & Ingber, D. E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19, 65–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Cybulski, O., Garstecki, P. & Grzybowski, B. A. Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nat. Phys. 15, 706–713 (2019).

    Article  CAS  Google Scholar 

  54. Peel, S. et al. Introducing an automated high content confocal imaging approach for Organs-on-Chips. Lab Chip 19, 410–421 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Ewart, L. et al. Application of microphysiological systems to enhance safety assessment in drug discovery. Annu. Rev. Pharmacol. Toxicol 58, 65–82 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Herland, A. et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng 4, 421–436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marquis, K. et al. Vascularized polymers spatially control bacterial cells on surfaces. Adv. Biosyst. 4, 1900216 (2020).

    Article  CAS  Google Scholar 

  59. Miller, J. S. et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials 31, 3736–3743 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gholipourmalekabadi, M., Zhao, S., Harrison, B. S., Mozafari, M. & Seifalian, A. M. Oxygen-generating biomaterials: a new, viable paradigm for tissue engineering? Trends Biotechnol. 34, 1010–1021 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Erdem, A. et al. 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs. Adv Healthc. Mater. 9, 1901794 (2020).

    Article  CAS  Google Scholar 

  62. Zhu, W. et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124, 106–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Colosi, C., Costantini, M., Barbetta, A. & Dentini, M. Microfluidic bioprinting of heterogeneous 3D tissue constructs. Methods Mol. Biol. 1612, 369–380 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019).

    Article  Google Scholar 

  65. Loessner, D. et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nat. Protoc. 11, 727–746 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Elbert, D. L. & Hubbell, J. A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2, 430–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Fairbanks, B., Schwartz, M., Bowman, C. & Anseth, K. Photoinitiated polymerisation of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerisation rate ans cytocompatibility. Biomaterials 30, 6702–6707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miller, L. R. et al. Considering sex as a biological variable in preclinical research. FASEB J. 31, 29–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Marin, V., Kaplanski, G., Grès, S., Farnarier, C. & Bongrand, P. Endothelial cell culture: protocol to obtain and cultivate human umbilical endothelial cells. J. Immunol. Methods 254, 183–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Price, G. M. et al. Effect of mechanical factors on the function of engineered human blood microvessels in micro fluidic collagen gels. Biomaterials 31, 6182–6189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bertassoni, L. E. et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14, 2202–2211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song, H. H. G. et al. Transient support from fibroblasts is sufficient to drive functional vascularization in engineered tissues. Adv. Func. Mater. 30, 2003777 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the many open-source and related projects that facilitated this work, including Arduino.cc, Blender.org, Fritzing.org, Grabcad.com, NIH ImageJ, Fiji.sc, Slic3r.org and Openscad.org, as well as the creators of computer-aided designs that we downloaded from Grabcad for renderings. We thank S. J. Paulsen, K. D. Janson and S. H. Saxton for helpful discussions and protocol validation. We thank D. W. Sazer for photography assistance. This work was supported in part by the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation (J.S.M.), Lung Biotechnology PBC (J.S.M.), the US National Institutes of Health (NIH) (NRSA award HL140905, I.S.K.) and the US National Science Foundation (NSF) (GRFP award 1450681, G.A.C. and B.G.).

Author information

Authors and Affiliations

Authors

Contributions

I.S.K. and B.G. developed perfusion chambers and protocols. G.A.C. developed the endothelialization workflow; G.A.C., M.K.R. and A.K.M. performed cell seeding and imaging experiments. I.S.K., G.A.C. and J.S.M. wrote the manuscript with input from all authors. J.S.M. supervised the project.

Corresponding author

Correspondence to Jordan S. Miller.

Ethics declarations

Competing interests

B.G. and J.S.M. are cofounders of and hold equity stakes in Volumetric.

Additional information

Peer review information Nature Protocols thanks Lorenzo Moroni, Mark Skylar-Scott and Ying Zheng for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Grigoryan, B. et al. Science 364, 458–464 (2019): https://doi.org/10.1126/science.aav9750

Kinstlinger, I. S. et al. Nat. Biomed. Eng. 4, 916–932 (2020): https://doi.org/10.1038/s41551-020-0566-1

Supplementary information

Supplementary Information

Supplementary Manual and Supplementary Figs. 1 and 2.

Supplementary Software 1

MATLAB code used to analyze data for Fig. 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinstlinger, I.S., Calderon, G.A., Royse, M.K. et al. Perfusion and endothelialization of engineered tissues with patterned vascular networks. Nat Protoc 16, 3089–3113 (2021). https://doi.org/10.1038/s41596-021-00533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00533-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing