Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Efficient and strand-specific profiling of replicating chromatin with enrichment and sequencing of protein-associated nascent DNA in mammalian cells

An Author Correction to this article was published on 27 August 2021

This article has been updated

Abstract

Faithful duplication of both genetic and epigenetic information is essential for all eukaryotic cells. DNA replication initiates from replication origins and proceeds bidirectionally but asymmetrically, with the leading strand being synthesized continuously and the lagging strand discontinuously as Okazaki fragments by distinct DNA polymerases. Unraveling the underlying mechanisms of chromatin replication at both strands is crucial to better understand DNA replication and its coupled processes, including nucleosome assembly, sister chromatid cohesion and DNA mismatch repair. Here we describe the enrichment and sequencing of protein-associated nascent DNA (eSPAN) method to analyze the enrichment of proteins of interest, including histones and their modifications at replicating chromatin in a strand-specific manner in mammalian cells. Briefly, cells are pulsed with the thymidine analog bromodeoxyuridine to label newly synthesized DNA. After cell permeabilization, the target proteins are sequentially bound by antibodies and protein A–fused transposase, which digests and tags genomic DNA of interest once activated by magnesium. The strand specificity is preserved through oligo-replacement. Finally, the resulting double-strand DNA is denatured and immunoprecipitated with antibodies against bromodeoxyuridine to enrich nascent DNA associated with proteins of interest. After PCR amplification and next-generation sequencing, the mapped reads are used to calculate the relative enrichment of the target proteins around replication origins. Compared with alternative methods, the eSPAN protocol is simple, cost-effective and sensitive, even in a relatively small number of mammalian cells. The whole procedures from cell collection to generation of sequencing-ready libraries can be completed in 2 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Side-by-side comparison of the eSPAN protocol in yeast (a) and mammalian cells (b).
Fig. 2
Fig. 3: Analysis of the quality of CUT&Tag, BrdU-IP-ssSeq and eSPAN libraries.
Fig. 4: eSPAN can detect asymmetric histone distribution at leading and lagging strands of DNA replication forks in both WT and mutant mouse ES cells.

Similar content being viewed by others

Data availability

All the sequenced datasets shown in this study are available in GEO under accession GSE142996.

Code availability

All the analysis code and programs have been deposited to GitHub at https://github.com/clouds-drift/eSPAN-bias.

Change history

References

  1. Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86, 417–438 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. Kunkel, T. A. & Erie, D. A. Eukaryotic mismatch repair in relation to DNA replication. Annu. Rev. Genet. 49, 291–313 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Alabert, C. & Groth, A. Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13, 153–167 (2012).

    Article  PubMed  CAS  Google Scholar 

  5. Yu, C. et al. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 56, 551–563 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gan, H. et al. Checkpoint kinase Rad53 couples leading- and lagging-strand DNA synthesis under replication stress. Mol. Cell 68, 446–455 e443 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu, H. W. et al. Division of labor between PCNA loaders in DNA replication and sister chromatid cohesion establishment. Mol. Cell 78, 725–738 e724 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gan, H. et al. The Mcm2-Ctf4-Polα axis facilitates parental histone H3-H4 transfer to lagging strands. Mol. Cell 72, 140–151 e143 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yu, C. et al. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361, 1386–1389 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. MacAlpine, D. M. & Almouzni, G. Chromatin and DNA replication. Cold Spring Harb. Perspect. Biol. 5, a010207 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Serra-Cardona, A. & Zhang, Z. Replication-coupled nucleosome assembly in the passage of epigenetic information and cell identity. Trends Biochem. Sci. 43, 136–148 (2018).

    Article  PubMed  CAS  Google Scholar 

  13. Xu, M. et al. Partitioning of histone H3-H4 tetramers during dna replication-dependent chromatin assembly. Science 328, 94–98 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Hammond, C. M. et al. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 18, 141–158 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Grover, P., Asa, J. S. & Campos, E. I. H3-H4 histone chaperone pathways. Annu. Rev. Genet. 52, 109–130 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Burgess, R. J. & Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20, 14–22 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Escobar, T. M. et al. Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179, 953–963 e911 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Radman-Livaja, M. et al. Patterns and mechanisms of ancestral histone protein inheritance in budding yeast. PLoS Biol. 9, e1001075 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Schlissel, G. & Rine, J. The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proc. Natl Acad. Sci. USA 116, 20605–20611 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li, Z. et al. DNA polymerase α interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands. Sci. Adv. 6, eabb5820 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gansauge, M. T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Article  PubMed  Google Scholar 

  22. Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Machida, Y. J., Hamlin, J. L. & Dutta, A. Right place, right time, and only once: replication initiation in metazoans. Cell 123, 13–24 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. Fragkos, M., Ganier, O., Coulombe, P. & Mechali, M. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 16, 360–374 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Ganier, O., Prorok, P., Akerman, I. & Mechali, M. Metazoan DNA replication origins. Curr. Opin. Cell Biol. 58, 134–141 (2019).

    Article  PubMed  CAS  Google Scholar 

  27. Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Smith, D. J. & Whitehouse, I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483, 434–438 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cayrou, C. et al. Genome-scale identification of active DNA replication origins. Methods 57, 158–164 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Wooten, M. et al. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat. Struct. Mol. Biol. 26, 732–743 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wooten, M. et al. Superresolution imaging of chromatin fibers to visualize epigenetic information on replicative DNA. Nat. Protoc. 15, 1188–1208 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Reveron-Gomez, N. et al. Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol. Cell 72, 239–249 e235 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xu, C. & Corces, V. G. Genome-wide mapping of protein-DNA interactions on nascent chromatin. Methods Mol. Biol. 1766, 231–238 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ramachandran, S. & Henikoff, S. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580–592 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ramachandran, S. & Henikoff, S. MINCE-Seq: mapping in vivo nascent chromatin with EdU and sequencing. Methods Mol. Biol. 1832, 159–168 (2018).

    Article  PubMed  CAS  Google Scholar 

  36. Yu, C., Gan, H. & Zhang, Z. Strand-specific analysis of DNA synthesis and proteins association with DNA replication forks in budding yeast. Methods Mol. Biol. 1672, 227–238 (2018).

    Article  PubMed  CAS  Google Scholar 

  37. Kaya-Okur, H. S. et al. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang, Q. et al. Tagmentation-based whole-genome bisulfite sequencing. Nat. Protoc. 8, 2022–2032 (2013).

    Article  PubMed  CAS  Google Scholar 

  39. Besnard, E. et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19, 837–844 (2012).

    Article  PubMed  CAS  Google Scholar 

  40. Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  42. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tarasov, A. et al. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sirbu, B. M. et al. Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry. J. Biol. Chem. 288, 31458–31467 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 29, 585–590 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Henikoff, K. Zhao and T. Fazzio for their help and suggestions. We also thank all members of Dr. Zhang’s group for their help in developing the protocol and S. Duan for reviewing our eSPAN analysis pipelines. This study is supported by NIH grants GM R35118015 (to Z.Z.) and K99GM134180 (to A.S-C.). The Columbia Genome Center and other facilities are supported in part through the NIH/NCI Cancer Center Support Grant P30CA013696 to the Herbert Irving Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and Z.L. conceived the project. X.H provided bioinformatic analysis. X.X and A-S.C. helped with the experiments and manuscript preparation. Z.L. and Z.Z. wrote the manuscript.

Corresponding author

Correspondence to Zhiguo Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Marcel Mechali and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Li, Z. et al. Sci. Adv. 6, eabb5820 (2020): https://doi.org/10.1126/sciadv.abb5820

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Hua, X., Serra-Cardona, A. et al. Efficient and strand-specific profiling of replicating chromatin with enrichment and sequencing of protein-associated nascent DNA in mammalian cells. Nat Protoc 16, 2698–2721 (2021). https://doi.org/10.1038/s41596-021-00520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00520-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing