Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genetic in vivo engineering of human T lymphocytes in mouse models

Abstract

Receptor targeting of vector particles is a key technology to enable cell type–specific in vivo gene delivery. For example, T cells in humanized mouse models can be modified by lentiviral vectors (LVs) targeted to human T-cell markers to enable them to express chimeric antigen receptors (CARs). Here, we provide detailed protocols for the generation of CD4- and CD8-targeted LVs (which takes ~9 d in total). We also describe how to humanize immunodeficient mice with hematopoietic stem cells (which takes 12–16 weeks) and precondition (over 5 d) and administer the vector stocks. Conversion of the targeted cell type is monitored by PCR and flow cytometry of blood samples. A few weeks after administration, ~10% of the targeted T-cell subtype can be expected to have converted to CAR T cells. By closely following the protocol, sufficient vector stock for the genetic manipulation of 10–15 humanized mice is obtained. We also discuss how the protocol can be easily adapted to use LVs targeted to other types of receptors and/or for delivery of other genes of interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of procedure.
Fig. 2: Alternative mouse models that can be used for in vivo CAR T cell generation.
Fig. 3: Plasmids for LV production.
Fig. 4: Characterization of target cells and vector stocks.
Fig. 5: Follow-up of humanization of NSG mice.
Fig. 6: Detection of in vivo–generated CAR T cells by flow cytometry.

Similar content being viewed by others

Data availability

Source data for Figs. 4 and 5 are provided. Data shown in Fig. 6 were previously published in ref. 12.

Code availability

Two NTA software scripts, the continuous flow script and the stop flow script, have been deposited in figshare (10.6084/m9.figshare.13221602) and are available as Supplementary Information.

References

  1. Radek, C. et al. Vectofusin-1 improves transduction of primary human cells with diverse retroviral and lentiviral pseudotypes, enabling robust, automated closed-system manufacturing. Hum. Gene Ther. 30, 1477–1493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, Z., Qiu, S., Zhang, X. & Chen, W. Optimized DNA electroporation for primary human T cell engineering. BMC Biotechnol. 18, 4 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dayball, K., Millar, J., Miller, M., Wan, Y. H. & Bramson, J. Electroporation enables plasmid vaccines to elicit CD8+ T cell responses in the absence of CD4+ T cells. J. Immunol. 171, 3379–3384 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Naldini, L. Gene therapy returns to centre stage. Nature 526, 351–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frank, A. M. & Buchholz, C. J. Surface-engineered lentiviral vectors for selective gene transfer into subtypes of lymphocytes. Mol. Ther. Methods Clin. Dev. 12, 19–31 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Agarwal, S., Weidner, T., Thalheimer, F. B. & Buchholz, C. J. In vivo generated human CAR T cells eradicate tumor cells. Oncoimmunology 8, e1671761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pfeiffer, A. et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol. Med. 10, e9158 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Agarwal, S. et al. In vivo generation of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. 28, 1783––1794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buchholz, C. J., Friedel, T. & Büning, H. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol. 33, 777–790 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Funke, S. et al. Targeted cell entry of lentiviral vectors. Mol. Ther. 16, 1427–1436 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Anliker, B., Longhurst, S. & Buchholz, C. J. Environmental risk assessment for medicinal products containing genetically modified organisms. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 53, 52–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Q. et al. T-cell receptor gene transfer exclusively to human CD8+ cells enhances tumor cell killing. Blood 120, 4334–4342 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Q. et al. Exclusive transduction of human CD4+ T cells upon systemic delivery of CD4-targeted lentiviral vectors. J. Immunol. 195, 2493–2501 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Frank, A. M. et al. CD8-specific DARPins improve selective gene delivery into human and primate T lymphocytes. Hum. Gene Ther. 31, 679–691 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Bender, R. R. et al. Receptor-targeted Nipah virus glycoproteins improve cell-type selective gene delivery and reveal a preference for membrane-proximal cell attachment. PLoS Pathog. 12, e1005641 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Weidner, T. et al. Genetic in vivo engineering of human T lymphocytes in mouse models. Preprint at https://protocolexchange.researchsquare.com/article/pex-1282/v1 (2020).

  21. Seif, M., Einsele, H. & Löffler, J. CAR T cells beyond cancer: hope for immunomodulatory therapy of infectious diseases. Front. Immunol. 10, 2711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akkina, R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435, 14–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Ito, M. et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175–3182 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Hiramatsu, H. et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/γcnull mice model. Blood 102, 873–880 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ishikawa, F. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chain null mice. Blood 106, 1565–1573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Anthony-Gonda, K. et al. Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Sci. Transl. Med. 11, eaav5685 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kitchen, S. G. & Zack, J. A. Engineering HIV-specific immunity with chimeric antigen receptors. AIDS Patient Care STDs 30, 556–561 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Borsotti, C., Borroni, E. & Follenzi, A. Lentiviral vector interactions with the host cell. Curr. Opin. Virol. 21, 102–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Morizono, K. et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat. Med. 11, 346–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Liang, M. et al. Targeted transduction via CD4 by a lentiviral vector uses a clathrin-mediated entry pathway. J. Virol. 83, 13026–13031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, H., Joo, K.-I., Ziegler, L. & Wang, P. Cell type-specific targeting with surface-engineered lentiviral vectors co-displaying OKT3 antibody and fusogenic molecule. Pharm. Res. 26, 1432–1445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jamali, A. et al. Highly efficient and selective CAR-gene transfer using CD4- and CD8-targeted lentiviral vectors. Mol. Ther. Methods Clin. Dev. 13, 371–379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruella, M. et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24, 1499–1503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Navaratnarajah, C. K., Generous, A. R., Yousaf, I. & Cattaneo, R. Receptor-mediated cell entry of paramyxoviruses: mechanisms, and consequences for tropism and pathogenesis. J. Biol. Chem. 295, 2771–2786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rasbach, A. et al. The receptor attachment function of measles virus hemagglutinin can be replaced with an autonomous protein that binds Her2/neu while maintaining its fusion-helper function. J. Virol. 87, 6246–6256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frank, A. M. et al. Combining T-cell specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Adv. 4, 5702–5715 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Manz, M. G. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26, 537–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Yahata, T. et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor γ null mice. J. Immunol. 169, 204–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Mhaidly, R. & Verhoeyen, E. Humanized mice are precious tools for preclinical evaluation of CAR T and CAR NK cell therapies. Cancers 12, 1915 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  43. Brendel, C., Rio, P. & Verhoeyen, E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem. Pharmacol. 174, 113711 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka, S. et al. Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2rγKO mice. J. Immunol. 188, 6145–6155 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Huntington, N. D. et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 206, 25–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cosgun, K. N. et al. Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 15, 227–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. McIntosh, B. E. et al. Nonirradiated NOD,B6.SCID Il2rγ−/− KitW41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep. 4, 171–180 (2015).

    Article  CAS  Google Scholar 

  48. Yurino, A. et al. Enhanced reconstitution of human erythropoiesis and thrombopoiesis in an immunodeficient mouse model with KitWv mutations. Stem Cell Rep. 7, 425–438 (2016).

    Article  CAS  Google Scholar 

  49. Miller, P. H. et al. Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Exp. Hematol. 48, 41–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rongvaux, A. et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu. Rev. Immunol. 31, 635–674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Covassin, L. et al. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rγnull (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin. Exp. Immunol. 174, 372–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith, D. J. et al. Propagating humanized BLT mice for the study of human immunology and immunotherapy. Stem Cells Dev. 25, 1863–1873 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Münch, R. C. et al. DARPins: an efficient targeting domain for lentiviral vectors. Mol. Ther. 19, 686–693 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Goujon, C. et al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4, 2 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Berger, G. et al. A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1–derived lentiviral vectors. Nat. Protoc. 6, 806–816 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Friedel, T. et al. Receptor-targeted lentiviral vectors are exceptionally sensitive toward the biophysical properties of the displayed single-chain Fv. Protein Eng. Des. Sel. 28, 93–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Folks, T. et al. Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proc. Natl Acad. Sci. USA 82, 4539–4543 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hartmann, J. et al. A library-based screening strategy for the identification of DARPins as ligands for receptor-targeted AAV and lentiviral vectors. Mol. Ther. Methods Clin. Dev. 10, 128–143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (grant number 1 R01 AI145045-01) and Health Holland (LentiPace II) to C.J.B. The authors acknowledge continous support by the Federal Ministry of Health (03292364) to C.J.B. The authors thank the staff of the Plateau de Biologie Expérimentale de la Souris (PBES) animal care facility at the Ecole Normale Supérieure de Lyon and the flow cytometry platform (SFR BioSciences Lyon) (UMS3444/US8), Lyon, France.

Author information

Authors and Affiliations

Authors

Contributions

T.W. drafted the protocol on LV vector stock generation and designed figures. S.A. drafted the protocol on CAR T cell detection, and S.P. and F.F. drafted the protocol on mouse humanization. G.B. and J.H. contributed to the writing of the manuscript. C.J.B. and E.V. supervised work, drafted the general parts and revised the manuscript.

Corresponding authors

Correspondence to Els Verhoeyen or Christian J. Buchholz.

Ethics declarations

Competing interests

E.V. and C.J.B are listed as inventors on patents on receptor-targeted LVs that have been licensed out. All other authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Bryan Strauss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Additional initial assessment was performed by informal referee Stephen Gottschalk.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Pfeiffer, A. et al. EMBO Mol. Med. 10, e9158 (2018): https://doi.org/10.15252/emmm.201809158

Agarwal, S., Weidner, T., Thalheimer, F. B. & Buchholz, C. J. Oncoimmunology 8, e1671761 (2019): https://doi.org/10.1080/2162402X.2019.1671761

Agarwal, S. et al. Mol. Ther. 28, 1783–1794 (2020): https://doi.org/10.1016/j.ymthe.2020.05.005

Supplementary information

Reporting Summary

Supplementary Data 1

These scripts can be copied into the script panel of the NTA software. There are two options. The continuous flow script should be used when a syringe pump is in place (‘NTA_Script_Continous_Flow’), whereas the stop flow script (‘NTA_Script_Stop_Flow’) should be used in its absence.

Source data

Source Data Fig. 4

Data provided in Fig. 4D displayed as individual data points, showing titers (t.u./ml) of each LV stock obtained by incubation with target cells.

Source Data Fig. 5

Data shown in Fig. 5, B and C displayed as individual data points, showing the percentage of hCD45+ cells (B) and the percentage of CD19+ or CD3+ of hCD45+ cells (C) for each mouse and time point, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidner, T., Agarwal, S., Perian, S. et al. Genetic in vivo engineering of human T lymphocytes in mouse models. Nat Protoc 16, 3210–3240 (2021). https://doi.org/10.1038/s41596-021-00510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00510-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer