Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tutorial: practical considerations for tissue clearing and imaging

Abstract

Tissue clearing has become a powerful technique for studying anatomy and morphology at scales ranging from entire organisms to subcellular features. With the recent proliferation of tissue-clearing methods and imaging options, it can be challenging to determine the best clearing protocol for a particular tissue and experimental question. The fact that so many clearing protocols exist suggests there is no one-size-fits-all approach to tissue clearing and imaging. Even in cases where a basic level of clearing has been achieved, there are many factors to consider, including signal retention, staining (labeling), uniformity of transparency, image acquisition and analysis. Despite reviews citing features of clearing protocols, it is often unknown a priori whether a protocol will work for a given experiment, and thus some optimization is required by the end user. In addition, the capabilities of available imaging setups often dictate how the sample needs to be prepared. After imaging, careful evaluation of volumetric image data is required for each combination of clearing protocol, tissue type, biological marker, imaging modality and biological question. Rather than providing a direct comparison of the many clearing methods and applications available, in this tutorial we address common pitfalls and provide guidelines for designing, optimizing and imaging in a successful tissue-clearing experiment with a focus on light-sheet fluorescence microscopy (LSFM).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Considerations in a tissue-clearing experiment utilizing a light-sheet microscope.
Fig. 2: Key interactions between variables in a tissue-clearing experiment requiring trade-offs.
Fig. 3: Artifacts in cleared tissues imaged on light-sheet microscopes.
Fig. 4: Fluorescence microscopy imaging system geometries and features of microscopes commonly used for imaging cleared tissue.

References

  1. 1.

    Gradinaru, V., Treweek, J., Overton, K. & Deisseroth, K. Hydrogel-tissue chemistry: principles and applications. Annu. Rev. Biophys. 47, 355–376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Susaki, E. A. et al. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nat. Commun. 11, 1982 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61–79 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ertürk, A. et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat. Med. 18, 166–171 (2012).

    Google Scholar 

  5. 5.

    Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173.e12 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Acar, M. et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126–130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223–227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Oshimori, N., Oristian, D. & Fuchs, E. TGF-β promotes heterogeneity and drug resistance in squamous. cell carcinoma. Cell 160, 963–976 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    von Neubeck, B. et al. An inhibitory antibody targeting carbonic anhydrase XII abrogates chemoresistance and significantly reduces lung metastases in an orthotopic breast cancer model in vivo. Int. J. Cancer 143, 2065–2075 (2018).

    Google Scholar 

  12. 12.

    Tanaka, N. et al. Publisher Correction: whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng. 1, 1 (2018).

    Google Scholar 

  13. 13.

    Henning, Y., Osadnik, C. & Malkemper, E. P. EyeCi: optical clearing and imaging of immunolabeled mouse eyes using light-sheet fluorescence microscopy. Exp. Eye Res. 180, 137–145 (2019).

    CAS  PubMed  Google Scholar 

  14. 14.

    Johnson, S. B., Schmitz, H. M. & Santi, P. A. TSLIM imaging and a morphometric analysis of the mouse spiral ganglion. Hear. Res. 278, 34–42 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Spalteholz, W. Über das Durchsichtigmachen von menschlichen und tierischen Präparaten (Leipzig: S. Hierzel). Leipzig (1914).

  17. 17.

    Costantini, I., Cicchi, R., Silvestri, L., Vanzi, F. & Pavone, F. S. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express 10, 5251 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dodt, H. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

    CAS  PubMed  Google Scholar 

  19. 19.

    Ertürk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012).

    PubMed  Google Scholar 

  20. 20.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Masselink, W. et al. Broad applicability of a streamlined ethyl cinnamate-based clearing procedure. Development 146, dev166884 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 10, 508–513 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Du, H., Hou, P., Zhang, W. & Li, Q. Advances in CLARITY based tissue clearing and imaging (review). Exp. Ther. Med. 16, 1567–1576 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hama, H. et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481–1488 (2011).

    CAS  PubMed  Google Scholar 

  25. 25.

    Tainaka, K. et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159, 911–924 (2014).

    CAS  PubMed  Google Scholar 

  26. 26.

    Tainaka, K. et al. Chemical landscape for tissue clearing based on hydrophilic reagents. Cell Rep 24, 2196–2210.e9 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Ke, M. T., Fujimoto, S. & Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16, 1154–1161 (2013).

    CAS  PubMed  Google Scholar 

  28. 28.

    Hou, B. et al. Scalable and DiI-compatible optical clearance of the mammalian brain. Front. Neuroanat. 9, (2015).

  29. 29.

    Aoyagi, Y., Kawakami, R., Osanai, H., Hibi, T. & Nemoto, T. A rapid optical clearing protocol using 2,2′-thiodiethanol for microscopic observation of fixed mouse brain. PLoS ONE 10, e0116280 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lai, H. M. et al. Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nat. Commun. 9, 1066 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Chen, L. et al. UbasM: an effective balanced optical clearing method for intact biomedical imaging. Sci. Rep. 7, 12218 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Rios, A. C. et al. Intraclonal plasticity in mammary tumors revealed through large-scale single-cell resolution 3D imaging. Cancer Cell 35, 618–632.e6 (2019).

    CAS  PubMed  Google Scholar 

  33. 33.

    Richardson, D. S. & Lichtman, J. W. SnapShot: tissue clearing. Cell 171, 496–496.e1 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T. & Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 32, 713–741 (2016).

    CAS  PubMed  Google Scholar 

  35. 35.

    Silvestri, L., Costantini, I., Sacconi, L. & Pavone, F. S. Clearing of fixed tissue: a review from a microscopist’s perspective. J. Biomed. Opt. 21, 081205 (2016).

    PubMed  Google Scholar 

  36. 36.

    Ariel, P. A beginner’s guide to tissue clearing. Int. J. Biochem. Cell Biol 84, 35–39 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Seo, J., Choe, M. & Kim, S. Y. Clearing and labeling techniques for large-scale biological tissues. Mol. Cells 39, 439–446 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Azaripour, A. et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytochem. 51, 9–23 (2016).

    PubMed  Google Scholar 

  39. 39.

    Yu, T., Qi, Y., Gong, H., Luo, Q. & Zhu, D. Optical clearing for multiscale biological tissues. J. Biophotonics 11, e201700187 (2018).

    Google Scholar 

  40. 40.

    Richardson, D. S. & Lichtman, J. W. Clarifying tissue clearing. Cell 162, 246–257 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Li, A. et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330, 1404–1408 (2010).

    CAS  PubMed  Google Scholar 

  42. 42.

    Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  PubMed  Google Scholar 

  43. 43.

    Ragan, T. et al. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat. Methods 9, 255–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).

    CAS  PubMed  Google Scholar 

  45. 45.

    Matryba, P. et al. Systematic evaluation of chemically distinct tissue optical clearing techniques in murine lymph nodes. J. Immunol. 204, 1395–1407 (2020).

    CAS  PubMed  Google Scholar 

  46. 46.

    Wan, P. et al. Evaluation of seven optical clearing methods in mouse brain. Neurophotonics 5, 1 (2018).

    Google Scholar 

  47. 47.

    Matryba, P., Kaczmarek, L. & Gołąb, J. Advances in ex situ tissue optical clearing. Laser Photon. Rev. 13, 1800292 (2019).

    Google Scholar 

  48. 48.

    Gómez-Gaviro, M. V., Sanderson, D., Ripoll, J. & Desco, M. Biomedical applications of tissue clearing and three-dimensional imaging in health and disease. iScience 23, 101432 (2020).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Greenbaum, A. et al. Bone CLARITY: clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci. Transl. Med. 9, eaah6518 (2017).

    PubMed  Google Scholar 

  51. 51.

    Chi, J., Crane, A., Wu, Z. & Cohen, P. Adipo-Clear: a tissue clearing method for three-dimensional imaging of adipose tissue. J. Vis. Exp. 2018, (2018).

  52. 52.

    Pende, M. et al. A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. Sci. Adv. 6, eaba0365 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ku, T. et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    CAS  PubMed  Google Scholar 

  57. 57.

    Zhao, S. et al. Cellular and molecular probing of intact human organs. Cell 180, 796–812.e19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Yun, D. H. et al. Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping. Preprint at bioRxiv https://doi.org/10.1101/660373 (2019).

  59. 59.

    Park, Y. G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37, 73 (2019).

    CAS  Google Scholar 

  60. 60.

    Hama, H. et al. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518–1529 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Perin, P., Voigt, F. F., Bethge, P., Helmchen, F. & Pizzala, R. iDISCO+ for the study of neuroimmune architecture of the rat auditory brainstem. Front. Neuroanat. 13, (2019).

  62. 62.

    Kim, S. Y. et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl Acad. Sci. USA 112, E6274–E6283 (2015).

    CAS  PubMed  Google Scholar 

  63. 63.

    Lee, E. et al. ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Murray, E. et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Vogel, A. T., Marqués, G. & Sanders, M. A. Microwave-assisted fixation, labeling and clearing for optical microscopy of thick specimens. Microsc. Microanal. 19, 16–17 (2013).

    Google Scholar 

  66. 66.

    Treweek, J. B. et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat. Protoc. 10, 1860–1896 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Epp, J. R. et al. Optimization of CLARITY for clearing whole-brain and other intact organs. eNeuro 2, ENEURO.0022-15.2015 (2015).

  68. 68.

    Magliaro, C. et al. Clarifying CLARITY: quantitative optimization of the diffusion based delipidation protocol for genetically labeled tissue. Front. Neurosci. 10, (2016).

  69. 69.

    Pan, C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13, 859–867 (2016).

    CAS  PubMed  Google Scholar 

  70. 70.

    Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  PubMed  Google Scholar 

  71. 71.

    Bedbrook, C. N., Deverman, B. E. & Gradinaru, V. Viral strategies for targeting the central and peripheral nervous systems. Ann. Rev. Neurosci. 41, 323–348 (2018).

    CAS  PubMed  Google Scholar 

  72. 72.

    Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  PubMed  Google Scholar 

  74. 74.

    Sereti, K.-I. et al. Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nat. Commun. 9, 754 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Jing, D. et al. Tissue clearing of both hard and soft tissue organs with the pegasos method. Cell Res 28, 803–818 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Li, J., Czajkowsky, D. M., Li, X. & Shao, Z. Fast immuno-labeling by electrophoretically driven infiltration for intact tissue imaging. Sci. Rep. 5, 10640 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Sakaguchi, R., Leiwe, M. N. & Imai, T. Bright multicolor labeling of neuronal circuits with fluorescent proteins and chemical tags. eLlife 7, e40350 (2018).

    Google Scholar 

  78. 78.

    Gleave, J. A., Lerch, J. P., Henkelman, R. M. & Nieman, B. J. A method for 3D immunostaining and optical imaging of the mouse brain demonstrated in neural progenitor cells. PLoS ONE 8, e72039 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Sillitoe, R. V. & Hawkes, R. Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem. 50, 235–244 (2002).

    CAS  PubMed  Google Scholar 

  80. 80.

    Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Ryan, D. P. et al. Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy. Nat. Commun. 8, 612 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Boothe, T. et al. A tunable refractive index matching medium for live imaging cells, tissues and model organisms. eLife 6, e27240 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Glaser, A. K. et al. Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nat. Commun. 10, 2781 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Baschong, W., Suetterlin, R. & Hubert Laeng, R. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J. Histochem. Cytochem. 49, 1565–1571 (2001).

    CAS  PubMed  Google Scholar 

  85. 85.

    Davis, A. S. et al. Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue. J. Histochem. Cytochem. 62, 405–423 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Neumann, M. & Gabel, D. Simple method for reduction of autofluorescence in fluorescence microscopy. J. Histochem. Cytochem. 50, 437–439 (2002).

    CAS  PubMed  Google Scholar 

  87. 87.

    Zhu, J. et al. MACS: rapid aqueous clearing system for 3D mapping of intact organs. Adv. Sci. 7, 1903185 (2020).

    CAS  Google Scholar 

  88. 88.

    Schnell, S. A., Staines, W. A. & Wessendorf, M. W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J. Histochem. Cytochem. 47, 719–730 (1999).

    CAS  PubMed  Google Scholar 

  89. 89.

    Romijn, H. J. et al. Double immunolabeling of neuropeptides in the human hypothalamus as analyzed by confocal laser scanning fluorescence microscopy. J. Histochem. Cytochem. 47, 229–235 (1999).

    CAS  PubMed  Google Scholar 

  90. 90.

    Whittington, N. C. & Wray, S. Suppression of red blood cell autofluorescence for immunocytochemistry on fixed embryonic mouse tissue. Curr. Protoc. Neurosci. 81, 2.28.1–2.28.12 (2017).

    CAS  Google Scholar 

  91. 91.

    Pende, M. et al. High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster. Nat. Commun. 9, 4731 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Clancy, B. & Cauller, L. J. Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J. Neurosci. Methods 83, 97–102 (1998).

    CAS  PubMed  Google Scholar 

  93. 93.

    Duong, H. & Han, M. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J. Neurosci. Methods 220, 46–54 (2013).

    PubMed  Google Scholar 

  94. 94.

    Croce, A. C. & Bottiroli, G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur. J. Histochem. 58, 320–337 (2014).

    Google Scholar 

  95. 95.

    Schmid, B. et al. 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods 16, 278–280 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods 16, 1105–1108 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    CAS  PubMed  Google Scholar 

  98. 98.

    Voie, A. H., Burns, D. H. & Spelman, F. A. Orthogonal‐plane fluorescence optical sectioning: three‐dimensional imaging of macroscopic biological specimens. J. Microsc. 170, 229–236 (1993).

    CAS  PubMed  Google Scholar 

  99. 99.

    Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. 1, 0084 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Chakraborty, T. et al. Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nat. Methods 16, 1109–1113 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Dodt, H.-U. et al. Ultramicroscopy: development and outlook. Neurophotonics 2, 041407 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Moatti, A. et al. Three-dimensional imaging of intact porcine cochlea using tissue clearing and custom-built light-sheet microscopy. Biomed. Opt. Express 11, 6181 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Diel, E. E., Lichtman, J. W. & Richardson, D. S. Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nat. Protoc. 15, 2773–2784 (2020).

    CAS  PubMed  Google Scholar 

  104. 104.

    Power, R. M. & Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14, 360–373 (2017).

    CAS  PubMed  Google Scholar 

  105. 105.

    Glaser, A., Bishop, K., Barner, L., Serafin, R. & Liu, J. A hybrid open-top light-sheet microscope for multi-scale imaging of cleared tissues. Preprint at bioRxiv https://doi.org/10.1101/2020.05.06.081745 (2020).

  106. 106.

    Sharpe, J. et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545 (2002).

    CAS  PubMed  Google Scholar 

  107. 107.

    Sharpe, J. Optical projection tomography. in Advanced Imaging in Biology and Medicine: Technology, Software Environments, Applications (eds. Sensen, C. W. & Hallgrimsson, B.)199–224 (2009).

  108. 108.

    Remacha, E., Friedrich, L., Vermot, J. & Fahrbach, F. O. How to define and optimize axial resolution in light-sheet microscopy: a simulation-based approach. Biomed. Opt. Express 11, 8 (2020).

    PubMed  Google Scholar 

  109. 109.

    Chang, B.-J., Dean, K. M. & Fiolka, R. Systematic and quantitative comparison of lattice and Gaussian light-sheets. Opt. Express 28, 27052 (2020).

    PubMed  Google Scholar 

  110. 110.

    Schacht, P., Johnson, S. B. & Santi, P. A. Implementation of a continuous scanning procedure and a line scan camera for thin-sheet laser imaging microscopy. Biomed. Opt. Express 1, 598 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Buytaert, J. A. N. & Dirckx, J. J. J. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J. Biomed. Opt. 12, 014039 (2007).

    PubMed  Google Scholar 

  112. 112.

    Dean, K. M., Roudot, P., Welf, E. S., Danuser, G. & Fiolka, R. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys. J. 108, 2807–2815 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Fu, Q., Martin, B. L., Matus, D. Q. & Gao, L. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nat. Commun. 7, 11088 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Huisken, J. & Stainier, D. Y. R. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett. 32, 2608 (2007).

    PubMed  Google Scholar 

  115. 115.

    Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

    CAS  PubMed  Google Scholar 

  116. 116.

    Keller, P. J. et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods 7, 637–642 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Silvestri, L., Bria, A., Sacconi, L., Iannello, G. & Pavone, F. S. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20, 20582 (2012).

    CAS  PubMed  Google Scholar 

  118. 118.

    Baumgart, E. & Kubitscheck, U. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20, 21805 (2012).

    PubMed  Google Scholar 

  119. 119.

    Fahrbach, F. O., Simon, P. & Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photonics 4, 780–785 (2010).

    CAS  Google Scholar 

  120. 120.

    Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Vettenburg, T. et al. Light-sheet microscopy using an Airy beam. Nat. Methods 11, 541–544 (2014).

    CAS  PubMed  Google Scholar 

  122. 122.

    Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Chang, B. J. et al. Universal light-sheet generation with field synthesis. Nat. Methods 16, 235–238 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).

    CAS  PubMed  Google Scholar 

  125. 125.

    Hörl, D. et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods 16, 870–874 (2019).

    PubMed  Google Scholar 

  126. 126.

    Bria, A. & Iannello, G. TeraStitcher—a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinform. 13, 316 (2012).

    Google Scholar 

  127. 127.

    Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795.e25 (2020).

    CAS  PubMed  Google Scholar 

  128. 128.

    Andreev, A. & Koo, D. E. S. Practical guide to storage of large amounts of microscopy data. Micros. Today 28, 42–45 (2020).

    Google Scholar 

  129. 129.

    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res 19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555–2573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Tanaka, N. et al. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng. 1, 796–806 (2017).

    CAS  PubMed  Google Scholar 

  132. 132.

    Costantini, I. et al. A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5, 9808 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Susaki, E. A. et al. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10, 1709–1727 (2015).

    CAS  PubMed  Google Scholar 

  134. 134.

    Matsumoto, K. et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nat. Protoc. 14, 3506–3537 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Liu, A. Glaser, P. Ariel, D. Richardson, F. Helmchen, R. Power and the Huisken lab for their comments and discussion on the manuscript. Illustrations for Figs. 1 and 3 were done by M. Neufeld (madyrose.com). The Circos133 data visualization tool was used to generate Fig. 2. Blender (www.blender.org) was used for rendering Fig. 4. Brain tissue samples displayed in Fig. 3 were provided by L. Egolf, D. Kirschenbaum, F. Catto, P. Perin, K. Le Corf and A. Frick. We also thank the UW-Madison tissue clearing group and all those who provided inspiration, insight and samples: M. Taylor, R. Sulllivan, E. Dent, R. Taylor, K. Chan, R. Salamon and N. Iyer. We acknowledge funding by the Morgridge Institute for Research and the NIH (R01OD026219).

Author information

Affiliations

Authors

Contributions

K.W. and J.H. conceived of the manuscript and assembled the team. K.W., F.F.V. and D.P.S. constructed light-sheet microscopes designed for imaging cleared tissue and developed the manuscript content over years of troubleshooting tissue clearing and imaging. K.W. wrote the manuscript. K.W. and J.H. designed the figures. J.H., F.F.V. and D.P.S. provided feedback and extensive editing of the manuscript. F.F.V. provided images for Fig. 3.

Corresponding author

Correspondence to Jan Huisken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Hans-Ulrich Dodt and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Tainaka, K. et al. Annu. Rev. Cell Dev. Biol. 32, 713–714 (2016) (https://www.annualreviews.org/doi/abs/10.1146/annurev-cellbio-111315-125001) introduces the key strategies for clearing tissue and provides an overview of protocols developed up to 2016.

Gradinaru, V. et al. Annu. Rev. Biophys. 45, 355–376 (2018) (https://www.annualreviews.org/doi/10.1146/annurev-biophys-070317-032905) provides an introduction into the principles underlying hydrogel-based tissue processing techniques.

The Mesoscale Selective Plane Illumination Initiative (mesoSPIM) (http://www.mesospim.org) is an open-hardware project aimed at making instructions and software to set up and operate versatile light-sheet microscopes for large cleared samples more accessible.

Jonkman, J. et al. Nat. Protoc. 15, 1585–1611 (2020) (https://www.nature.com/articles/s41596-020-0313-9) is an excellent resource for optimizing fluorescent imaging experiments relevant to many imaging modalities.

The Confocal Microscopy List (http://confocal-microscopy-list.588098.n2.nabble.com/) has, since the early 1990s, been a go-to resource for microscopy and imaging-related questions.

Microform (https://forum.microlist.org/) was recently established by Jennifer Waters and Tally Lambert. Currently, most questions are on hardware, fluorophores and other practical aspects of microscopy.

TeraStitcher (https://abria.github.io/TeraStitcher/) is a stitching tool for large microscopy datasets developed by Alessandro Bria, Giulio Iannello and Roberto Valenti.

Napari (https://github.com/napari/napari) is a rapidly evolving multidimensional image viewer especially well suited for microscopy datasets written in Python. The development is spearheaded by the Chan-Zuckerberg Biohub.

BigStitcher (https://imagej.net/BigStitcher) is a stitching toolbox integrated into the ImageJ/Fiji ecosystem capable of stitching and fusing large multiview lightsheet datasets. The BigStitcher software was developed in the laboratory of Stephan Preibisch.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weiss, K.R., Voigt, F.F., Shepherd, D.P. et al. Tutorial: practical considerations for tissue clearing and imaging. Nat Protoc 16, 2732–2748 (2021). https://doi.org/10.1038/s41596-021-00502-8

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing