Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts

Abstract

Solid acid catalysts are used extensively in various advanced chemical and petrochemical processes. Their catalytic performance (namely, activity, selectivity, and reaction pathway) mostly depends on their acid properties, such as type (Brønsted versus Lewis), location, concentration, and strength, as well as the spatial correlations of their acid sites. Among the diverse methods available for acidity characterization, solid-state nuclear magnetic resonance (SSNMR) techniques have been recognized as the most valuable and reliable tool, especially in conjunction with suitable probe molecules that possess observable nuclei with desirable properties. Taking 31P probe molecules as an example, both trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO) adsorb preferentially to the acid sites on solid catalysts and thus are capable of providing qualitative and quantitative information for both Brønsted and Lewis acid sites. This protocol describes procedures for (i) the pretreatment of typical solid acid catalysts, (ii) adoption and adsorption of various 31P probe molecules, (iii) considerations for one- and two-dimensional (1D and 2D, respectively) NMR acquisition, (iv) relevant data analysis and spectral assignment, and (v) methodology for NMR mapping with the assistance of theoretical calculations. Users familiar with SSNMR experiments can complete 31P–1H heteronuclear correlation (HETCOR), 31P–31P proton–driven spin diffusion (PDSD), and double-quantum (DQ) homonuclear correlation with this protocol within 2–3 d, depending on the complexity and the accessible acid sites of the solid acid samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assorted representations of acid centers, their transformation, and possible adsorption structures of phosphorous probes in solid acid catalysts.
Fig. 2: Solid-state 31P MAS NMR spectra of adsorbed phosphorous probe molecules in microporous zeolites.
Fig. 3: Flow diagram of the protocol for NMR probe molecule approach.
Fig. 4: Schematics of assorted 2D SSNMR pulse sequences.
Fig. 5: 31P MAS NMR spectra of TMPO adsorbed on H-ZSM-5 zeolite (Si/Al = 15).
Fig. 6: 31P MAS NMR spectra of TMPO adsorbed on H-ZSM-5 zeolite: effects of CH2Cl2 solvent and idle time.
Fig. 7: 31P MAS NMR spectra of TMPO adsorbed on H-ZSM-5 (Si/Al = 15) zeolite: effects of baking temperature and duration time.
Fig. 8: 31P MAS NMR spectra of TMPO adsorbed on H-ZSM-5 (Si/Al = 15) zeolite: effects of baking temperature.
Fig. 9: 31P MAS NMR spectra of phosphine oxide probe molecules adsorbed on various H-ZSM-5 zeolites with different Si/Al ratios (15, 26, and 75).
Fig. 10: 31P MAS NMR spectra of TMP adsorbed on the parent HY and HUSY zeolites and their respective dealuminated counterparts, namely HY-d450 and HUSY-d450.
Fig. 11: 2D 1H–31P HETCOR NMR spectra of TMP adsorbed on dealuminated HY-d450 zeolite.
Fig. 12: 2D 31P–31P PDSD and 31P–31P DQ MAS NMR spectra of TMP adsorbed on dealuminated HY-d450 zeolite.
Fig. 13: 31P MAS spectra of dehydrated and rehydrated H-ZSM-5 zeolites with different TMPO loadings.

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article. The NMR integration data and detailed analytical data are available upon request. The software used for NMR data analysis is freely available (see ‘Software’ in the Materials section).

References

  1. Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995).

    CAS  Google Scholar 

  2. Mintova, S., Jaber, M. & Valtchev, V. Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 44, 7207–7233 (2015).

    CAS  PubMed  Google Scholar 

  3. Phadke, N. M., Mansoor, E., Bondil, M., Head-Gordon, M. & Bell, A. T. Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. J. Am. Chem. Soc. 141, 1614–1627 (2019).

    CAS  PubMed  Google Scholar 

  4. Martínez-Espín, J. S. et al. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5. ACS Catal. 7, 5773–5780 (2017).

    Google Scholar 

  5. Macht, J., Carr, R. T. & Iglesia, E. Consequences of acid strength for isomerization and elimination catalysis on solid acids. J. Am. Chem. Soc. 131, 6554–6565 (2009).

    CAS  PubMed  Google Scholar 

  6. Ristanović, Z. et al. Reversible and site-dependent proton-transfer in zeolites uncovered at the single-molecule level. J. Am. Chem. Soc. 140, 14195–14205 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Marcus, D. M. et al. Mechanistically significant details of the H/D exchange reactions of propene over acidic zeolite catalysts. Angew. Chem. Int. Ed. 45, 1933–1935 (2006).

    CAS  Google Scholar 

  8. Schreiber, M. W. et al. Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. J. Am. Chem. Soc. 140, 4849–4859 (2018).

    CAS  PubMed  Google Scholar 

  9. Perras, F. A., Wang, Z., Naik, P., Slowing, I. I. & Pruski, M. Natural abundance 17O DNP NMR provides precise O-H distances and insights into the Brønsted acidity of heterogeneous catalysts. Angew. Chem. Int. Ed. 56, 9165–9169 (2017).

    CAS  Google Scholar 

  10. Zheng, A., Huang, S. J., Liu, S. B. & Deng, F. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys. Chem. Chem. Phys. 13, 14889–14901 (2011).

    CAS  PubMed  Google Scholar 

  11. Zheng, A., Liu, S. B. & Deng, F. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nucl. Magn. Reson. 55−56, 12–27 (2013).

    PubMed  Google Scholar 

  12. Zheng, A., Deng, F. & Liu, S. B. Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus-containing probe molecules. Annu. Rep. NMR Spectrosc. 81, 47–108 (2014).

    CAS  Google Scholar 

  13. Zheng, A., Li, S., Liu, S. B. & Deng, F. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc. Chem. Res. 49, 655–663 (2016).

    CAS  PubMed  Google Scholar 

  14. Zheng, A., Liu, S. B. & Deng, F. 31P NMR chemical shifts of phosphorous probes as reliable and practical acidity scales for solid and liquid catalysts. Chem. Rev. 117, 12475–12531 (2017).

    CAS  PubMed  Google Scholar 

  15. Barthos, R., Lonyi, F., Onyestyak, G. & Valyon, J. An IR, FR, and TPD study on the acidity of H-ZSM-5, sulfated zirconia, and sulfated zirconia-titania using ammonia as the probe molecule. J. Phys. Chem. B 104, 7311–7319 (2000).

    CAS  Google Scholar 

  16. Freude, D., Hunger, M., Pfeifer, H. & Schwieger, W. 1H MAS NMR-studies on the acidity of zeolites. Chem. Phys. Lett. 128, 62–66 (1986).

    CAS  Google Scholar 

  17. Brunner, E. Solid state NMR–a powerful tool for the investigation of surface hydroxyl groups in zeolites and their interactions with adsorbed probe molecules. J. Mol. Struct. 355, 61–85 (1995).

    CAS  Google Scholar 

  18. Gabrienko, A. et al. Strong acidity of silanol groups of zeolite beta: evidence from the studies by IR spectroscopy of adsorbed CO and 1H MAS NMR. Micropor. Mesopor. Mater. 131, 210–216 (2010).

    CAS  Google Scholar 

  19. Mastikhin, V. M., Mudrakovsky, I. L. & Nosov, A. V. 1H NMR magic angle spinning (MAS) studies of heterogeneous catalysis. Prog. Nucl. Magn. Reson. Spectrosc. 23, 259–299 (1991).

    CAS  Google Scholar 

  20. Hunger, M., Ernst, S., Steuernagel, S. & Weitkamp, J. High-field 1H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22. Micropor. Mater. 6, 349–353 (1996).

    CAS  Google Scholar 

  21. Beck, L. W., White, J. L. & Haw, J. F. 1H{27Al} double-resonance experiments in solids: an unexpected observation in the 1H MAS spectrum of zeolite HZSM-5. J. Am. Chem. Soc. 116, 9657–9661 (1994).

    CAS  Google Scholar 

  22. Chen, K. Z. et al. Direct detection of multiple acidic proton sites in zeolite HZSM-5. J. Am. Chem. Soc. 139, 18698–18704 (2017).

    CAS  PubMed  Google Scholar 

  23. Li, S. et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J. Am. Chem. Soc. 129, 11161–11171 (2007).

    CAS  PubMed  Google Scholar 

  24. Yu, Z. et al. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angew. Chem. Int. Ed. 49, 8657–8661 (2010).

    CAS  Google Scholar 

  25. Haw, J. F., Xu, T., Nicholas, J. B. & Gorgune, P. W. Solvent-assisted proton transfer in catalysis by zeolite solid acids. Nature 389, 832–835 (1997).

    CAS  Google Scholar 

  26. Lunsford, J. L., Rothwell, W. P. & Shen, W. Acid sites in zeolite Y: a solid-state NMR and infrared study using trimethylphosphine as a probe molecule. J. Am. Chem. Soc. 107, 1540–1547 (1985).

    CAS  Google Scholar 

  27. Yi, X. et al. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites. J. Am. Chem. Soc. 140, 10764–10774 (2018).

    CAS  PubMed  Google Scholar 

  28. Jiang, Y. J., Huang, J., Dai, W. L. & Hunger, M. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl. Magn. Reson. 39, 116–141 (2011).

    CAS  PubMed  Google Scholar 

  29. Chen, W. H. et al. A solid-state NMR, FT-IR, and TPD study on acid properties of sulfated and metal-promoted zirconia: influence of promoter and sulfation treatment. Catal. Today 116, 111–120 (2006).

    CAS  Google Scholar 

  30. Ko, H. H. Preparation, modification and characterization of metal-oxide and nano-sized mesoporous aluminosilicate solid acid catalysts [translation]. MS thesis, Institute of Nanomaterials, Chinese Culture University (2005).

  31. Derouane, E. G. et al. The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev. 55, 454–515 (2013).

    CAS  Google Scholar 

  32. Trickett, C. A. et al. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem. 11, 170–176 (2019).

    CAS  PubMed  Google Scholar 

  33. Kreissl, H. T. et al. Structural studies of bulk to nanosize niobium oxides with correlation to their acidity. J. Am. Chem. Soc. 139, 12670–12680 (2017).

    CAS  PubMed  Google Scholar 

  34. Chen, W. et al. Can Hammett indicators accurately measure the acidity of zeolite catalysts with confined space? Insights into the mechanism of coloration. Catal. Sci. Technol. 9, 5045–5057 (2019).

    CAS  Google Scholar 

  35. Takeuchi, M., Tsukamoto, T., Kondo, A. & Matsuoka, M. Investigation of NH3 and NH4+ adsorbed on ZSM-5 zeolites by near and middle infrared spectroscopy. Catal. Sci. Technol. 5, 4587–4593 (2015).

    CAS  Google Scholar 

  36. Niwa, M. & Katada, N. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A Review. Chem. Rec. 13, 432–455 (2013).

    CAS  PubMed  Google Scholar 

  37. Knozinger, H., Krietenbrink, H. & Ratnasamy, P. 2,6-Disubstituted pyridines as probe molecules for surface acid sites−an infrared spectroscopic study. J. Catal. 48, 436–439 (1977).

    Google Scholar 

  38. Niwa, M., Suzuki, K., Isamoto, K. & Katada, N. Identification and measurements of strong Brønsted acid site in ultrastable Y (USY) zeolite. J. Phys. Chem. B 110, 264–269 (2006).

    CAS  PubMed  Google Scholar 

  39. Crowe, M. C. & Campbell, C. T. Adsorption microcalorimetry: recent advances in instrumentation and application. Annu. Rev. Anal. Chem. 4, 41–58 (2011).

    CAS  Google Scholar 

  40. Ryczkowski, J. IR spectroscopy in catalysis. Catal. Today 68, 263–381 (2001).

    CAS  Google Scholar 

  41. Concepción, P. Application of infrared spectroscopy in catalysis: impacts on catalysts’ selectivity. in Infrared Spectroscopy: Principles, Advances, and Applications (ed El-Azazy, M.) Ch. 8 (IntechOpen, 2019).

  42. Hadjiivanov, K. Identification and characterization of surface hydroxyl groups by infrared spectroscopy. Adv. Catal. 57, 99–318 (2014).

    CAS  Google Scholar 

  43. Corma, A., Corell, C., Fornés, V., Kolodziejski, W. & Pérez-Pariente, J. Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22. Zeolites 15, 576–582 (1995).

    CAS  Google Scholar 

  44. Jacobs, P. A. & Mortier, W. J. An attempt to rationalize stretching frequencies of lattice hydroxyl groups in hydrogen-zeolites. Zeolites 2, 226–230 (1982).

    CAS  Google Scholar 

  45. Jacobs, P. A. & Von Ballmoos, R. Framework hydroxyl groups of H-ZSM-5 zeolites. J. Phys. Chem. 86, 3050–3052 (1982).

    CAS  Google Scholar 

  46. Kazansky, V. B., Serykh, A. I., Semmer-Herledan, V. & Fraissard, J. Intensities of OH IR stretching bands as a measure of the intrinsic acidity of bridging hydroxyl groups in zeolites. Phys. Chem. Chem. Phys. 5, 966–969 (2003).

    CAS  Google Scholar 

  47. Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347–354 (1993).

    CAS  Google Scholar 

  48. Khabtou, S., Chevreau, T. & Lavalley, J. C. Quantitative infrared study of the distinct acidic hydroxyl groups contained in modified Y zeolites. Micropor. Mater. 3, 133–148 (1994).

    CAS  Google Scholar 

  49. Martins, G. V. A. et al. Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J. Phys. Chem. C. 112, 7193–7200 (2008).

    CAS  Google Scholar 

  50. Gabrienko, A. A. et al. Direct measurement of zeolite Brønsted acidity by FTIR spectroscopy: solid-state 1H MAS NMR approach for reliable determination of the integrated molar absorption coefficients. J. Phys. Chem. C. 122, 25386–25395 (2018).

    CAS  Google Scholar 

  51. Busca, G. The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys. Chem. Chem. Phys. 1, 723–736 (1999).

    CAS  Google Scholar 

  52. Busca, G. Acidity and basicity of zeolites: a fundamental approach. Microporous Mesoporous Mater. 254, 3–16 (2017).

    CAS  Google Scholar 

  53. Kondratieva, E. V., Manoilova, O. V. & Tsyganenko, A. A. Integrated absorption coefficient of adsorbed CO. Kinet. Catal. 49, 451–456 (2008).

    CAS  Google Scholar 

  54. Hadjiivanov, K. I. & Vayssilov, G. N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 47, 307–511 (2002).

    CAS  Google Scholar 

  55. Armaroli, T. et al. Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites. Appl. Catal. A 306, 78–84 (2006).

    CAS  Google Scholar 

  56. Zecchina, A., Spoto, G. & Bordiga, S. Probing the acid sites in confined spaces of microporous materials by vibrational spectroscopy. Phys. Chem. Chem. Phys. 7, 1627–1642 (2005).

    CAS  PubMed  Google Scholar 

  57. Zecchina, A. & Areán, C. O. Diatomic molecular probes for mid-IR studies of zeolites. Chem. Soc. Rev. 25, 187–197 (1996).

    CAS  Google Scholar 

  58. Kubelková, L., Beran, S. & Lercher, J. A. Determination of proton affinity of zeolites and zeolite-like solids by low-temperature adsorption of carbon monoxide. Zeolites 9, 539–543 (1989).

    Google Scholar 

  59. Klinowski, J. Solid-state NMR studies of molecular sieve catalysts. Chem. Rev. 91, 1459–1479 (1991).

    CAS  Google Scholar 

  60. Hunger, M. Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl. Magn. Reson. 6, 1–9 (1996).

    CAS  PubMed  Google Scholar 

  61. Yi, D. L., Zhang, H. L. & Deng, Z. W. 1H and 15N chemical shifts of adsorbed acetonitrile as measures to probe the Bronsted acid strength of solid acids: A DFT study. J. Mol. Catal. A: Chem. 326, 88–93 (2010).

    CAS  Google Scholar 

  62. Zheng, A. et al. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J. Phys. Chem. B 111, 3085–3089 (2007).

    CAS  PubMed  Google Scholar 

  63. Fang, H., Zheng, A., Chu, Y. & Deng, F. 13C chemical shift of adsorbed acetone for measuring the acid strength of solid acids: a theoretical calculation study. J. Phys. Chem. C. 114, 12711–12718 (2010).

    CAS  Google Scholar 

  64. Zheng, A., Zhang, H., Lu, X., Liu, S. B. & Deng, F. Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts. J. Phys. Chem. B 112, 4496–4505 (2008).

    CAS  PubMed  Google Scholar 

  65. Zheng, A. et al. 31P Chemical shift of adsorbed trialkylphosphine oxide for acidity characterization of solid acids catalysts. J. Phys. Chem. A 112, 7349–7356 (2008).

    CAS  PubMed  Google Scholar 

  66. Chu, Y. et al. Acidic strengths of Brønsted and Lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine. J. Phys. Chem. C. 115, 7660–7667 (2011).

    CAS  Google Scholar 

  67. Yi, X. F. et al. From one to two: acidic proton spatial networks in porous zeolite materials. Chem. Mater. 32, 1332–1342 (2020).

    CAS  Google Scholar 

  68. Zhao, Q. et al. Discernment and quantification of internal and external acid sites on zeolites. J. Phys. Chem. B 106, 4462–4469 (2002).

    CAS  Google Scholar 

  69. Zhao, Q., Chen, W. H., Huang, S. J. & Liu, S. B. Qualitative and quantitative determination of acid sites on solid acid catalysts. Stud. Surf. Sci. Catal. 145, 205–209 (2003).

    CAS  Google Scholar 

  70. Rakiewicz, E. F., Peters, A. W., Wormsbecher, R. F., Sutovich, K. J. & Mueller, K. T. Characterization of acid sites in zeolitic and other inorganic systems using solid-state 31P NMR of the probe molecule trimethylphosphine oxide. J. Phys. Chem. B 102, 2890–2896 (1998).

    CAS  Google Scholar 

  71. Osegovic, J. P. & Drago, R. S. Measurement of the global acidity of solid acids by 31P MAS NMR of chemisorbed triethylphosphine oxide. J. Phys. Chem. B 104, 147–154 (2000).

    CAS  Google Scholar 

  72. Chen, W. H. et al. Effect of surface modification on coking, deactivation and para-selectivity of H-ZSM-5 zeolites during ethylbenzene disproportionation. J. Mol. Catal. A 181, 41–55 (2003).

    Google Scholar 

  73. Chen, W. H. et al. Effects of binder, coking and regeneration on acid properties of H-mordenite during TDP reaction. Res. Chem. Intermediat 29, 761–772 (2003).

    CAS  Google Scholar 

  74. Bauer, F. et al. Surface modification of nano-sized HZSM-5 and HFER by pre-coking and silanization. J. Catal. 251, 258–270 (2007).

    CAS  Google Scholar 

  75. Xu, S. et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 52, 11564–11568 (2013).

    CAS  Google Scholar 

  76. Wiper, P. V., Amelse, J. & Mafra, L. Multinuclear solid-state NMR characterization of the Brønsted/Lewis acid properties in the BP HAMS-1B (H-[B]-ZSM-5) borosilicate molecular sieve using adsorbed TMPO and TBPO probe molecules. J. Catal. 316, 240–250 (2014).

    CAS  Google Scholar 

  77. Xin, S. et al. The acidic nature of “NMR-invisible” tri-coordinated framework aluminum species in zeolites. Chem. Sci. 10, 10159–10169 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Begum, S. H. Acidity-activity correlation over bimetallic iron-based ZSM-5 catalysts during selective catalytic reduction of NO by NH3. J. Mol. Catal. A 423, 423–432 (2016).

    CAS  Google Scholar 

  79. Hung, C. T. et al. Zeolite ZSM-5 supported bimetallic Fe-based catalysts for selective catalytic reduction of NO: effects of acidity and metal loading. Adv. Porous Mater. 4, 189–199 (2016).

    Google Scholar 

  80. Dubray, F. et al. Direct evidence for single molybdenum atoms incorporated in the framework of MFI zeolite nanocrystals. J. Am. Chem. Soc. 141, 8689–8693 (2019).

    CAS  PubMed  Google Scholar 

  81. Huang, S. J. et al. Structure and acidity of Mo/H-MCM-22 catalysts studied by NMR spectroscopy. Catal. Today 97, 25–34 (2004).

    CAS  Google Scholar 

  82. Chen, W. H. et al. Hydrocracking in Al-MCM-41: diffusion effect. Micropor. Mesopor. Mater. 66, 209–218 (2003).

    CAS  Google Scholar 

  83. Sakthivel, A. et al. Direct synthesis of highly stable mesoporous molecular sieves containing zeolite building units. Adv. Funct. Mater. 15, 253–258 (2005).

    CAS  Google Scholar 

  84. Hung, C. T. et al. Acidity and alkylation activity of 12-tungstophosphoric acid supported on ionic liquid-functionalized SBA-15. Catal. Today 327, 10–18 (2019).

    CAS  Google Scholar 

  85. Feng, N. et al. Combined solid-state NMR and theoretical calculation studies of Brønsted acid properties in anhydrous 12-molybdophosphoric acid. J. Phys. Chem. C. 114, 15464–15472 (2010).

    CAS  Google Scholar 

  86. Huang, S. J. et al. New insights of Keggin-type 12-tungstophosphoric acid from 31P MAS NMR of adsorbed trimethylphosphine oxide and DFT calculation studies. Chem. Asian J. 6, 137–148 (2011).

    CAS  PubMed  Google Scholar 

  87. Han, X. et al. Syntheses of novel halogen-free Brønsted-Lewis acidic ionic liquid catalysts and their applications for synthesis of methyl caprylate. Green. Chem. 17, 499–508 (2015).

    CAS  Google Scholar 

  88. Huang, M. Y. et al. Heteropolyacid-based ionic liquids as efficient homogeneous catalysts for acetylation of glycerol. J. Catal. 320, 42–51 (2014).

    CAS  Google Scholar 

  89. Han, X. et al. Ionic liquid-silicotungstic acid composites as efficient and recyclable catalysts for selective esterification of glycerol with lauric acid to monolaurin. ChemCatChem 9, 2727–2738 (2017).

    CAS  Google Scholar 

  90. Jiang, J. et al. Superacidity in sulfated metal-organic framework-808. J. Am. Chem. Soc. 136, 12844–12847 (2014).

    CAS  PubMed  Google Scholar 

  91. Tagusagawa, C. et al. Highly active mesoporous Nb-W oxide solid-acid catalyst. Angew. Chem. Int. Ed. 49, 1128–1132 (2010).

    CAS  Google Scholar 

  92. Huang, J., Van Vegten, N., Jiang, Y., Hunger, M. & Baiker, A. Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength. Angew. Chem. Int. Ed. 49, 7776–7781 (2010).

    CAS  Google Scholar 

  93. Peng, Y. K. et al. Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: a zinc oxide case study. J. Am. Chem. Soc. 138, 2225–2234 (2016).

    CAS  PubMed  Google Scholar 

  94. Rodriguez, J., Culver, D. B. & Conley, M. P. Generation of phosphonium sites on sulfated zirconium oxide: relationship to Brønsted acid strength of surface −OH sites. J. Am. Chem. Soc. 141, 1484–1488 (2019).

    CAS  PubMed  Google Scholar 

  95. De Clippel, F. et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts. J. Am. Chem. Soc. 134, 10089–10101 (2012).

    PubMed  Google Scholar 

  96. Kitano, M. et al. Protonated titanate nanotubes with Lewis and Brønsted acidity: relationship between nanotube structure and catalytic activity. Chem. Mater. 25, 385–393 (2013).

    CAS  Google Scholar 

  97. Zhang, X. et al. Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace. Nat. Commun. 5, 3170 (2014).

    PubMed  Google Scholar 

  98. Brown, S. P. & Spiess, H. W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 101, 4125–4156 (2001).

    CAS  PubMed  Google Scholar 

  99. Manolikas, T., Herrmann, T. & Meier, B. H. Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 3959–3966 (2008).

    CAS  PubMed  Google Scholar 

  100. Hohwy, M. et al. Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. J. Chem. Phys. 108, 2686–2694 (1998).

    CAS  Google Scholar 

  101. Frisch, M. J. et al. Gaussian09, revision B.01 (Gaussian, 2010).

  102. Pickard, C. J. & Mauri, F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63, 245101 (2001).

    Google Scholar 

  103. Yates, J. R., Pickard, C. J. & Mauri, F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B 76, 024401 (2007).

    Google Scholar 

  104. Misono, M. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal. Rev. Sci. Eng. 29, 269–321 (1987).

    CAS  Google Scholar 

  105. Paze, C., Bordiga, S., Civalleri, B. & Zecchina, A. (CD3CN)2H+ adducts in anhydrous H3PW12O40: a FTIR study. Phys. Chem. Chem. Phys. 3, 1345–1347 (2001).

    CAS  Google Scholar 

  106. Seo, Y., Cho, K., Jung, Y. & Ryoo, R. Characterization of the surface acidity of MFI zeolite nanosheets by 31P NMR of adsorbed phosphine oxides and catalytic cracking of decalin. ACS Catal. 3, 713–720 (2013).

    CAS  Google Scholar 

  107. Hernandez-Tamargo, C. E., Roldan, A. & De Leeuw, N. H. DFT modeling of the adsorption of trimethylphosphine oxide at the internal and external surfaces of zeolite MFI. J. Phys. Chem. C. 120, 19097–19106 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This research used the facilities and resources of Solid-state NMR and Catalysis Lab, Institute of Atomic and Molecular Sciences, Academia Sinica (AS), Taiwan, and the State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), China. The theoretical aspects of this study were supported by the computing facilities at both the National Center for High-performance Computing (NCHC, Taiwan) and the Shanghai Supercomputer Center (SSC, China). The research efforts that established the 31P-NMR approach for acidity characterization were supported by the Natural Science Foundation of China (grants 91645112, 21802164, 21902180, 21991090, 21991092, and U1832148), the Ministry of Science and Technology (MOST, Taiwan; grants NSC 101-2113-M-001-020-MY3 and 104-2113-M-001-019), the Key Research Program of Frontier Sciences, CAS (grant QYZDB-SSW-SLH026), and the Natural Science Foundation of Hubei Province (grant 2018CFA009), China.

Author information

Authors and Affiliations

Authors

Contributions

A.Z. proposed and designed the protocol. X.Y. wrote the manuscript with major input from A.Z., H.-H.K., F.D. and S.-B.L. H.-H.K. performed the NMR experiments in regard to the protocol for standard operating procedures of the 31P-NMR approach. X.Y. carried out the 2D NMR experiments and NMR mapping works. For specific questions regarding the conception and the foundations of the protocol, including selection of an appropriate probe molecule, sample pre-/post-treatments, and relevant experimental details, and applications of the 31P-NMR approach, as well as the questions concerning DFT theoretical calculations, 2D NMR and NMR mapping, structure–acidity correlation, and relevant experimental details, please contact A.Z. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Anmin Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Anton Gabrienko, Luis Mafra, Alexander G. Stepanov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Zheng, A., Zhang, H., Lu, X., Liu, S. B. & Deng, F. J. Phys. Chem. B 112, 4496–4505 (2008): https://doi.org/10.1021/jp709739v

Ko, H. H. Preparation, modification and characterization of metal-oxide and nano-sized mesoporous aluminosilicate solid acid catalysts [translation]. MS thesis, Institute of Nanomaterials, Chinese Culture University (2005): https://hdl.handle.net/11296/755su2

Zheng, A., Liu, S.-B. & Deng, F. Chem. Rev. 117, 12475–12531 (2017): https://doi.org/10.1021/acs.chemrev.7b00289

Yi, X. et al. J. Am. Chem. Soc. 140, 10764−10774 (2018): https://doi.org/10.1021/jacs.8b04819

Xin, S. et al. Chem. Sci. 10, 10159−10169 (2019): https://doi.org/10.1039/C9SC02634G

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Ko, HH., Deng, F. et al. Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nat Protoc 15, 3527–3555 (2020). https://doi.org/10.1038/s41596-020-0385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0385-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing