Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-cell imaging of human cancer xenografts using adult immunodeficient zebrafish

Abstract

Zebrafish are an ideal cell transplantation model. They are highly fecund, optically clear and an excellent platform for preclinical drug discovery studies. Traditionally, xenotransplantation has been carried out using larval zebrafish that have not yet developed adaptive immunity. Larval engraftment is a powerful short-term transplant platform amenable to high-throughput drug screening studies, yet animals eventually reject tumors and cannot be raised at 37 °C. To address these limitations, we have recently developed adult casper-strain prkdc−/−, il2rgα−/− immunocompromised zebrafish that robustly engraft human cancer cells for in excess of 28 d. Because the adult zebrafish can be administered drugs by oral gavage or i.p. injection, our model is suitable for achieving accurate, preclinical drug dosing. Our platform also allows facile visualization of drug effects in vivo at single-cell resolution over days. Here, we describe the procedures for xenograft cell transplantation into the prkdc−/−, il2rgα−/− model, including refined husbandry protocols for optimal growth and rearing of immunosuppressed zebrafish at 37 °C; optimized intraperitoneal and periocular muscle cell transplantation; and epifluorescence and confocal imaging approaches to visualize the effects of administering clinically relevant drug dosing at single-cell resolution in vivo. After identification of adult homozygous animals, this procedure takes 35 d to complete. 7 days are required to acclimate adult fish to 37 °C, and 28 d are required for engraftment studies. Our protocol provides a comprehensive guide for using immunocompromised zebrafish for xenograft cell transplantation and credentials the model as a new preclinical drug discovery platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of a xenotransplantation experiment using prkdc−/−, il2rgα−/− adult zebrafish.
Fig. 2: Genotyping for prkdc and il2rgα mutations.
Fig. 3: Acclimating prkdc−/−, il2rgα−/− zebrafish for long-term housing at 37 °C.
Fig. 4: Transplantation of EGFP-expressing human RD cells into prkdc−/−, il2rgα−/− zebrafish by either i.p. or periocular transplantation.
Fig. 5: Clinically relevant dosing of drugs in prkdc−/−, il2rgα−/− zebrafish.
Fig. 6: Engraftment of EGFP-expressing RD cells into prkdc−/−, il2rgα−/− zebrafish.

Similar content being viewed by others

Data availability

All data generated in this study are included in this published article. The original data files are available on request from the corresponding author.

References

  1. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stewart, E. et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature 549, 96–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Das, R. et al. Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat. Med 22, 1351–1357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goyama, S., Wunderlich, M. & Mulloy, J. C. Xenograft models for normal and malignant stem cells. Blood 125, 2630–2640 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Day, C. P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ito, M. et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175–3182 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Yu, M. et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Drapkin, B. J. et al. Genomic and functional fidelity of small cell lung cancer patient-derived xenografts. Cancer Disco. 8, 600–615 (2018).

    Article  CAS  Google Scholar 

  10. Hayes, M. N. et al. Vangl2/RhoA signaling pathway regulates stem cell self-renewal programs and growth in rhabdomyosarcoma. Cell Stem Cell 22, 414–427.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ellenbroek, S. I. & van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer 14, 406–418 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Fior, R. et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl Acad. Sci. U. S. A 114, E8234–8243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chapman, A. et al. Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 8, 688–695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Welker, A. M. et al. Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma. Neuroscience 356, 35–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Novoa, B. & Figueras, A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv. Exp. Med. Biol. 946, 253–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Cabezas-Sainz, P. et al. Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool. BMC Cancer 18, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yan, C. et al. Visualizing engrafted human cancer and therapy responses in immunodeficient zebrafish. Cell 177, 1903–1914.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereiro, P. et al. Zebrafish Nk-lysins: first insights about their cellular and functional diversification. Dev. Comp. Immunol. 51, 148–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Page, D. M. et al. An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood 122, e1–e11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshida, N., Frickel, E. M. & Mostowy, S. Macrophage-microbe interactions: lessons from the zebrafish model. Front. Immunol. 8, 1703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meeker, N. D. et al. Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques 43, 610 (2007). 612, 614.

    Article  CAS  PubMed  Google Scholar 

  22. Botstein, D. et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Samaee, S. M., Seyedin, S. & Varga, Z. M. An affordable intraperitoneal injection setup for juvenile and adult zebrafish. Zebrafish 14, 77–79 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dang, M. et al. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies. Dis. Model. Mech. 9, 811–820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Collymore, C., Rasmussen, S. & Tolwani, R. J. Gavaging adult zebrafish. J. Vis. Exp. 50691 (2013).

  26. White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). 5th edn (University of Oregon Press, 2007).

  28. Ignatius, M. S. & Langenau, D. M. Fluorescent imaging of cancer in zebrafish. Methods Cell Biol. 105, 437–459 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tang, Q. et al. Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish. Nat. Commun. 7, 10358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moore, J. C. et al. T cell immune deficiency in zap70 mutant zebrafish. Mol. Cell. Biol. 36, 2868–2876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang, Q. et al. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. J. Exp. Med 214, 2875–2887 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sire, J. Y. & Akimenko, M. A. Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int. J. Dev. Biol. 48, 233–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Scott, G. R. & Johnston, I. A. Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proc. Natl Acad. Sci. U. S. A 109, 14247–14252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, W. et al. Characterization of prostate cancer cell progression in zebrafish xenograft model. Int. J. Oncol. 52, 252–260 (2018).

    CAS  PubMed  Google Scholar 

  35. Kalamida, D. et al. Fever-range hyperthermia vs. hypothermia effect on cancer cell viability, proliferation and HSP90 expression. PLoS ONE 10, e0116021 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhu, S. et al. Culture at a higher temperature mildly inhibits cancer cell growth but enhances chemotherapeutic effects by inhibiting cell-cell collaboration. PLoS ONE 10, e0137042 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mantso, T. et al. Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma. Sci. Rep. 8, 10724 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moore, J. C. et al. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J. Exp. Med 213, 2575–2589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Rooijen, N. & Hendrikx, E. Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol. Biol. 605, 189–203 (2010).

    Article  PubMed  Google Scholar 

  40. McAllister, R. M. et al. Cultivation in vitro of cells derived from a human rhabdomyosarcoma. Cancer 24, 520–526 (1969).

    Article  CAS  PubMed  Google Scholar 

  41. Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix 3B (2001).

  42. Tang, Q. et al. Optimized cell transplantation using adult rag2 mutant zebrafish. Nat. Methods 11, 821–824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the MGH histopathology core, as well as the MGH Cancer Center Molecular Pathology Confocal Core for their technical help. We thank Drs. Qin Tang, John Moore and Jessica McCann for their advice and intellectual support for the initial development of the protocol. This work is supported by NIH grants R24OD016761 (D.M.L.), R01CA154923 (D.M.L.), R01CA215118 (D.M.L.), R01CA211734 (D.M.L.) and R01CA226926 (D.M.L.); the Liddy Shriver Sarcoma Initiative (D.M.L.); the MGH Research Scholars Program (D.M.L.); the Tosteson & Fund for Medical Discovery Fellowship from MGH (C.Y.); and the Alex’s Lemonade Stand Foundation Young Investigator Award (C.Y.).

Author information

Authors and Affiliations

Authors

Contributions

C.Y., Q.Y., D.D. and D.M.L. conceived, designed and conducted the study; analyzed data; and prepared the manuscript. C.Y., Q.Y., D.D. and D.C.B performed most of the experiments. J.F.R. provided important intellectual contributions and designed experiments.

Corresponding author

Correspondence to David M. Langenau.

Ethics declarations

Competing interests

The General Hospital Corporation has a patent pending on the creation and use of immune-compromised zebrafish for engraftment of human cancers. D.M.L. is also a co-inventor on patent application number USSN 14/903,940.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Yan, C. et al. Cell 177, 1903–1914.e14 (2019): https://www.sciencedirect.com/science/article/pii/S0092867419303903

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Do, D., Yang, Q. et al. Single-cell imaging of human cancer xenografts using adult immunodeficient zebrafish. Nat Protoc 15, 3105–3128 (2020). https://doi.org/10.1038/s41596-020-0372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0372-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer