Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The HDOCK server for integrated protein–protein docking

Abstract

The HDOCK server (http://hdock.phys.hust.edu.cn/) is a highly integrated suite of homology search, template-based modeling, structure prediction, macromolecular docking, biological information incorporation and job management for robust and fast protein–protein docking. With input information for receptor and ligand molecules (either amino acid sequences or Protein Data Bank structures), the server automatically predicts their interaction through a hybrid algorithm of template-based and template-free docking. The HDOCK server distinguishes itself from similar docking servers in its ability to support amino acid sequences as input and a hybrid docking strategy in which experimental information about the protein–protein binding site and small-angle X-ray scattering can be incorporated during the docking and post-docking processes. Moreover, HDOCK also supports protein–RNA/DNA docking with an intrinsic scoring function. The server delivers both template- and docking-based binding models of two molecules and allows for download and interactive visualization. The HDOCK server is user friendly and has processed >30,000 docking jobs since its official release in 2017. The server can normally complete a docking job within 30 min.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Procedure of the HDOCK server.
Fig. 2: Performance of the HDOCK approach and other docking servers/methods on different categories of targets in the CASP13-CAPRI assembly challenge in 2018.
Fig. 3: Examples of SAXS data with their best predicted models for the top 10 predictions.
Fig. 4: Home screen of the HDOCK server.
Fig. 5: Expanded interface for providing the residues of the binding site.
Fig. 6: HDOCK result page.

Data availability

The raw data and example files can be downloaded on our HDOCK server (http://hdock.phys.hust.edu.cn/) or are available from the corresponding author upon request.

Code availability

The HDOCK service is freely available for academic use at http://hdock.phys.hust.edu.cn/.

References

  1. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vajda, S., Hall, D. R. & Kozakov, D. Sampling and scoring: a marriage made in heaven. Proteins 81, 1874–1884 (2013).

    CAS  PubMed  Google Scholar 

  3. Vakser, I. A. Protein-protein docking: from interaction to interactome. Biophys. J. 107, 1785–1793 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, S. Y. Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking. Drug Discov. Today 20, 969–977 (2015).

    CAS  PubMed  Google Scholar 

  5. Huang, S. Y. Search strategies and evaluation in protein-protein docking: principles, advances and challenges. Drug Discov. Today 19, 1081–1096 (2014).

    CAS  PubMed  Google Scholar 

  6. Wodak, S. J. & Janin, J. Computer analysis of protein-protein interaction. J. Mol. Biol. 124, 323–342 (1978).

    CAS  PubMed  Google Scholar 

  7. Katchalski-Katzir, E. et al. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl Acad. Sci. USA 89, 2195–2199 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gabb, H. A., Jackson, R. M. & Sternberg, M. J. E. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272, 106–120 (1997).

    CAS  PubMed  Google Scholar 

  9. Vakser, I. A. Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex. Proteins (Suppl 1), 226–230 (1997).

  10. Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    CAS  PubMed  Google Scholar 

  11. De Vries, S. J., van Dijk, M. & Bonvin, A. M. J. J. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010).

    PubMed  Google Scholar 

  12. van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    PubMed  Google Scholar 

  13. Yu, J. C. et al. InterEvDock: a docking server to predict the structure of protein-protein interactions using evolutionary information. Nucleic Acids Res. 44, W542–W549 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lensink, M. F., Nadzirin, N., Velankar, S. & Wodak, S. J. Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition. Proteins 1–23 (2020).

  15. Janin, J. et al. CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52, 2–9 (2003).

    CAS  PubMed  Google Scholar 

  16. wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2019).

    Google Scholar 

  17. Hopf, T. A. et al. Sequence co-evolution gives 3D contacts and structures of protein complexes. Elife 3, e3430 (2014).

    Google Scholar 

  18. Zeng, H. et al. ComplexContact: a web server for inter-protein contact prediction using deep learning. Nucleic Acids Res. 46, W432–W437 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, S. Y. & Zou, X. Q. An iterative knowledge-based scoring function for protein-protein recognition. Proteins 72, 557–579 (2008).

    CAS  PubMed  Google Scholar 

  20. Lensink, M. F. et al. Blind prediction of homo- and hetero-protein complexes: the CASP13-CAPRI experiment. Proteins 87, 1200–1221 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan, Y. M., Wen, Z. Y., Wang, X. X. & Huang, S. Y. Addressing recent docking challenges: a hybrid strategy to integrate template-based and free protein-protein docking. Proteins 85, 497–512 (2017).

    CAS  PubMed  Google Scholar 

  22. Yan, Y. & Huang, S.-Y. Protein-protein docking with improved shape complementarity. In Intelligent Computing Theories and Application (eds. Huang, D.-S., Bevilacqua, V.,Premaratne, P. & Gupta, P.) 600–605 (Springer International Publishing, Cham, Switzerland, 2018).

  23. Huang, S. Y. & Zou, X. Q. MDockPP: a hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Proteins 78, 3096–3103 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, S. Y. et al. Inclusion of the orientational entropic effect and low-resolution experimental information for protein-protein docking in Critical Assessment of PRedicted Interactions (CAPRI). Proteins 81, 2183–2191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lensink, M. F. et al. The challenge of modeling protein assemblies: the CASP12-CAPRI experiment. Proteins 86(Suppl 1), 257–273 (2018)..

  26. Lensink, M. F. et al. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment. Proteins 84, 323–348 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. Yan, Y., Zhang, D., Zhou, P., Li, B. & Huang, S.-Y. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 45, W365–W373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Porter, K. A., Desta, I., Kozakov, D. & Vajda, S. What method to use for protein-protein docking? Curr. Opin. Struct. Biol. 55, 1–7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nithin, C., Ghosh, P. & Bujnicki, J. M. Bioinformatics tools and benchmarks for computational docking and 3D structure prediction of RNA-protein complexes. Genes (Basel) 9, E432 (2018).

    Google Scholar 

  30. Macalino, S. J. Y. et al. Evolution of in silico strategies for protein-protein interaction drug discovery. Molecules 23, E1963 (2018).

    PubMed  Google Scholar 

  31. Dudenhoeffer, B. R., Schneider, H., Schweimer, K. & Knauer, S. H. SuhB is an integral part of the ribosomal antitermination complex and interacts with NusA. Nucleic Acids Res. 47, 6504–6518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fux, A., Korotkov, V. S., Schneider, M., Antes, I. & Sieber, S. A. Chemical cross-linking enables drafting ClpXP proximity maps and taking snapshots of in situ interaction networks. Cell Chem. Biol. 26, 48–59.e7 (2019).

    CAS  PubMed  Google Scholar 

  33. Deep, A. et al. Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin-antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res. 46, 11639–11655 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kostareva, O. et al. Fab fragment of VHH-based antibody netakimab: crystal structure and modeling interaction with cytokine IL-17A. Crystals 9, 177 (2019).

    Google Scholar 

  35. Sharma, S., Ahmed, M. & Akhter, Y. The molecular link between tyrosol binding to tri6 transcriptional regulator and downregulation of trichothecene biosynthesis. Biochimie 160, 14–23 (2019).

    CAS  PubMed  Google Scholar 

  36. Rose, A. S. et al. NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34, 3755–3758 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, S. Y. & Zou, X. Q. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res. 42, e55 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Comeau, S. R., Gatchell, D. W., Vajda, S. & Camacho, C. J. ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res. 32, W96–W99 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tovchigrechko, A. & Vakser, I. A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34, W310–W314 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lesk, V. I. & Sternberg, M. J. 3D-Garden: a system for modelling protein-protein complexes based on conformational refinement of ensembles generated with the marching cubes algorithm. Bioinformatics 24, 1137–1144 (2008).

    CAS  PubMed  Google Scholar 

  42. Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M. D. & Ritchie, D. W. HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res. 38, W445–W449 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Torchala, M., Moal, I. H., Chaleil, R. A. G., Fernandez-Recio, J. & Bates, P. A. SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29, 807–809 (2013).

    CAS  PubMed  Google Scholar 

  44. Pierce, B. G. et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771–1773 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lyskov, S. & Gray, J. J. The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 36, W233–W238 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. de Vries, S. J., Schindler, C. E. M., de Beauchene, I. C. & Zacharias, M. A web interface for easy flexible protein-protein docking with ATTRACT. Biophys. J. 108, 462–465 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Cheng, T. M. K., Blundell, T. L. & Fernandez-Recio, J. pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 68, 503–515 (2007).

    CAS  PubMed  Google Scholar 

  49. Jimenez-Garcia, B., Pons, C. & Fernandez-Recio, J. pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29, 1698–1699 (2013).

    CAS  PubMed  Google Scholar 

  50. Jimenez-Garcia, B., Pons, C., Svergun, D. I., Bernado, P. & Fernandez-Recio, J. pyDockSAXS: protein-protein complex structure by SAXS and computational docking. Nucleic Acids Res. 43, W356–W361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tuszynska, I., Magnus, M., Jonak, K., Dawson, W. & Bujnicki, J. M. NPDock: a web server for protein-nucleic acid docking. Nucleic Acids Res. 43, W425–W430 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

    CAS  Google Scholar 

  53. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Google Scholar 

  54. Marti-Renom, M. A. et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000).

    CAS  PubMed  Google Scholar 

  55. Yan, Y. & Huang, S.-Y. Pushing the accuracy limit of shape complementarity for protein-protein docking. BMC Bioinformatics 20(Suppl 25), 696 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Venkatraman, V., Yang, Y. F. D., Sael, L. & Kihara, D. Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics 10,, 47 (2009).

    Google Scholar 

  57. Xu, X. J. et al. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions. Proteins 85, 424–434 (2017).

    CAS  PubMed  Google Scholar 

  58. Baek, M., Park, T., Heo, L., Park, C. & Seok, C. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res. 45, W320–W324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Weng, G. et al. HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res. 47, W322–W330 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical assessment of methods of protein structure prediction (CASP)-Round XIII. Proteins 87, 1011–1020 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93–96 (2001).

    CAS  PubMed  Google Scholar 

  62. Yan, Y. et al. Challenges and opportunities of automated protein-protein docking: HDOCK server versus human predictions in CAPRI Rounds 38-46. Proteins 1–15 (2020).

  63. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, J. Y. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, J. Y. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43, W174–W181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yan, Y. M., Tao, H. Y. & Huang, S. Y. HSYMDOCK: a docking web server for predicting the structure of protein homo-oligomers with Cn or Dn symmetry. Nucleic Acids Res. 46, W423–W431 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan, Y. & Huang, S.-Y. CHDOCK: a hierarchical docking approach for modeling Cn symmetric homo-oligomeric complexes. Biophys. Rep. 5, 65–72 (2019).

    CAS  Google Scholar 

  70. Franke, D. et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr 50, 1212–1225 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schneidman-Duhovny, D., Hammel, M. & Sali, A. Macromolecular docking restrained by a small angle X-ray scattering profile. J. Struct. Biol. 173, 461–471 (2011).

    CAS  PubMed  Google Scholar 

  72. Schindler, C. E. M., de Vries, S. J., Sasse, A. & Zacharias, M. SAXS data alone can generate high-quality models of protein-protein complexes. Structure 24, 1387–1397 (2016).

    CAS  PubMed  Google Scholar 

  73. Li, S. X., Olson, W. K. & Lu, X. J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 47, W26–W34 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, J. & Xiao, Y. Using 3dRNA for RNA 3-D structure prediction and evaluation. Curr. Protoc. Bioinformatics 57, 5.9.1–5.9.12 (2017).

    Google Scholar 

  75. Zhao, Y. J. et al. Automated and fast building of three-dimensional RNA structures. Sci. Rep. 2, 734 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Liu, J. H., Wang, J. T. L., Hu, J. & Tian, B. A method for aligning RNA secondary structures and its application to RNA motif detection. BMC Bioinformatics 6, 89 (2005).

    PubMed  PubMed Central  Google Scholar 

  77. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    PubMed  PubMed Central  Google Scholar 

  78. Rother, M., Rother, K., Puton, T. & Bujnicki, J. M. ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res. 39, 4007–4022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, J., Zhao, Y. J., Zhu, C. Y. & Xiao, Y. 3dRNAscore: a distance and torsion angle dependent evaluation function of 3D RNA structures. Nucleic Acids Res. 43, e63 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Wang, J. et al. Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide-nucleotide interactions from direct coupling analysis. Nucleic Acids Res. 45, 6299–6309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wallner, B. & Elofsson, A. Can correct protein models be identified? Protein Sci. 12, 1073–1086 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Larsson, P., Skwark, M. J., Wallner, B. & Elofsson, A. Assessment of global and local model quality in CASP8 using Pcons and ProQ. Proteins 77(Suppl 9), 167–172 (2009).

    CAS  PubMed  Google Scholar 

  83. Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Capriotti, E. & Marti-Renom, M. A. Quantifying the relationship between sequence and three-dimensional structure conservation in RNA. BMC Bioinformatics 11, 322 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. Gardner, P. P., Wilm, A. & Washietl, S. A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res. 33, 2433–2439 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004).

    CAS  PubMed  Google Scholar 

  87. Xu, J. & Zhang, Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26, 889–895 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gong, S., Zhang, C. & Zhang, Y. RNA-align: quick and accurate alignment of RNA 3D structures based on size-independent TM-scoreRNA. Bioinformatics 35, 4459–4461 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Yoo, A. B., Jette, M. A. & Grondona, M. SLURM: Simple Linux Utility for Resource Management. In Job Scheduling Strategies for Parallel Processing. (eds. Feitelson, D., Rudolph, L. & Schwiegelshohn, U.) 44–60 (Springer, Berlin, Heidelberg, 2003).

  90. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  91. Hwang, H., Vreven, T., Janin, J. & Weng, Z. P. Protein-protein docking benchmark version 4.0. Proteins 78, 3111–3114 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kundrotas, P. J. et al. Dockground: a comprehensive data resource for modeling of protein complexes. Protein Sci. 27, 172–181 (2018).

    CAS  PubMed  Google Scholar 

  93. Mendez, R., Leplae, R., De Maria, L. & Wodak, S. J. Assessment of blind predictions of protein-protein interactions: current status of docking methods. Proteins 52, 51–67 (2003).

    CAS  PubMed  Google Scholar 

  94. Yan, Y. & Huang, S. A non-redundant benchmark for symmetric protein docking. Big Data Mining and Analytics 2, 92–99 (2019).

    Google Scholar 

  95. Nithin, C., Mukherjee, S. & Bahadur, R. P. A non-redundant protein-RNA docking benchmark version 2.0. Proteins 85, 256–267 (2017).

    CAS  PubMed  Google Scholar 

  96. Huang, S. Y. & Zou, X. A nonredundant structure dataset for benchmarking protein-RNA computational docking. J. Comput. Chem. 34, 311–318 (2013).

    CAS  PubMed  Google Scholar 

  97. Perez-Cano, L., Jimenez-Garcia, B. & Fernandez-Recio, J. A protein-RNA docking benchmark (II): extended set from experimental and homology modeling data. Proteins 80, 1872–1882 (2012).

    CAS  PubMed  Google Scholar 

  98. van Dijk, M. & Bonvin, A. M. J. J. A protein-DNA docking benchmark. Nucleic Acids Res. 36, e88 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Valentini, E., Kikhney, A. G., Previtali, G., Jeffries, C. M. & Svergun, D. I. SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 43, D357–D363 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison. Proc. Natl Acad. Sci. USA 85, 2444–2448 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Miao, Z. et al. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures. RNA 21, 1066–1084 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Miao, Z. et al. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA 23, 655–672 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Miao, Z. C. & Westhof, E. RNA structure: advances and assessment of 3D structure prediction. Annu. Rev. Biophys. 46, 483–503 (2017).

    CAS  PubMed  Google Scholar 

  104. Jeffries, C. M. et al. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat. Protoc. 11, 2122–2153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Grant, T. D. et al. The accurate assessment of small-angle X-ray scattering data. Acta Crystallogr. D Biol. Crystallogr. 71, 45–56 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bernado, P. & Svergun, D. I. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol. Biosyst. 8, 151–167 (2012).

    CAS  PubMed  Google Scholar 

  107. Jacques, D. A. & Trewhella, J. Small-angle scattering for structural biology—expanding the frontier while avoiding the pitfalls. Protein Sci. 19, 642–657 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Putnam, C. D., Hammel, M., Hura, G. L. & Tainer, J. A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 31670724), the National Key Research and Development Program of China (grant nos. 2016YFC1305800 and 2016YFC1305805) and the startup grant of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.H. conceived and supervised the project. Y.Y., H.T., J.H. and S.-Y.H. designed and performed the experiments. Y.Y., H.T., J.H. and S.-Y.H. wrote the manuscript.

Corresponding author

Correspondence to Sheng-You Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Yan, Y. et al. Nucleic Acids Res. 45, W365–W373 (2017): https://doi.org/10.1093/nar/gkx407

Yan, Y. et al. Proteins 85, 497–512 (2017): https://doi.org/10.1002/prot.25234

Yan, Y. et al. Nucleic Acids Res. 46, W423–W431 (2018): https://doi.org/10.1093/nar/gky398

Yan, Y. and Huang, S.-Y. BMC Bioinformatics 20(Suppl 25), 696 (2019): https://doi.org/10.1186/s12859-019-3270-y

Integrated supplementary information

Supplementary Fig. 1 Template-free docking example.

The HDOCK results for template-free docking with target 1CGI, in which sequences were provided as inputs and the template-free docking option was checked.

Supplementary Fig. 2 Symmetric multimer docking example.

The HDOCK results for symmetric multimer docking with D2 target 1HCJ, in which sequences were provided for template-free docking.

Supplementary Fig. 3 SAXS-assisted docking example.

The HDOCK results for SAXS-assisted template-free docking with target 1CGI, in which sequences and SAXS data were provided.

Supplementary Fig. 4 Interaction restraint-guided docking example.

The HDOCK results for interaction restraint-guided template-free docking with target 1CGI, in which residue distance restraints and sequences were provided for docking.

Supplementary Fig. 5 Protein–RNA docking example.

The HDOCK results for template-based modeling and template-free docking with protein–RNA target 1C0A, in which individual structures were provided as inputs.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Tao, H., He, J. et al. The HDOCK server for integrated protein–protein docking. Nat Protoc 15, 1829–1852 (2020). https://doi.org/10.1038/s41596-020-0312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0312-x

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing