Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

On-resin multicomponent protocols for biopolymer assembly and derivatization

Abstract

Solid-phase synthesis represents the methodological showcase for technological advances such as split-and-pool combinatorial chemistry and the automated synthesis of peptides, nucleic acids and polysaccharides. These strategies involve iterative coupling cycles that do not generate functional diversity besides that incorporated by the amino acids, nucleosides and monosaccharide building blocks. In sharp contrast, multicomponent reactions (MCRs) are traditionally used to generate both skeletal and appendage diversity in short, batchwise procedures. On-resin MCRs have traditionally been employed for the construction of heterocycle and peptidomimetic libraries, but that scenario has changed recently, and today the focus is more on the solid-phase derivatization of peptides and oligonucleotides. This review presents relevant experimental details and addresses the synthetic scope of such on-resin multicomponent protocols employed to accomplish specific biopolymer covalent modifications that are practically inviable by traditional solution-phase methodologies. Recommendations are provided to facilitate the implementation of solid-supported protocols and avoid possible pitfalls associated with the selection of the polymeric resin, the solvent and the order and amount of the reagents employed. We describe procedures comprising the multicomponent lipidation, biotinylation and labeling of both termini and the side chains, as well as the use of MCRs in the traceless on-resin synthesis of ligated and cyclic peptides. Solid-phase protocols for the assembly of α-helical and parallel β-sheet peptides as well as hybrid peptide–peptoid and peptide–peptide nucleic acid architectures are described. Finally, the solid-supported multicomponent derivatization of DNA oligonucleotides is illustrated as part of the DNA-encoded library technology relying on MCR-derived heterocyclic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: On-resin Ugi multicomponent derivatization of peptides with lipids, steroids, and biotin.
Fig. 3: On-resin N-terminal derivatization of a peptide by a multicomponent 1,3-dipolar cycloaddition reaction.
Fig. 4: On-resin multicomponent derivatization of peptides at Lys side chains.
Fig. 5: On-resin assembly of aza-Lys mimics by A3-coupling reaction.
Fig. 6
Fig. 7: Traceless (cyclo)peptide synthesis using Ugi reaction resin-anchoring strategies.
Fig. 8: On-resin multicomponent construction of peptide secondary structures.
Fig. 9: On-resin strategies based on repetitive Ugi reactions.
Fig. 10: Solid-phase synthesis of DNA-coupled heterocycles by MCRs.

Similar content being viewed by others

Data availability

All information and data used in this review have already been published and can be accessed in the original publications cited.

References

  1. Merrifield, R. B. Automated synthesis of peptides. Science 150, 178–185 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Plante, O. J., Palmacci, E. R. & Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Caruthers, M. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Scaringe, S. A., Wincott, F. E. & Caruthers, M. H. Novel RNA synthesis method using 5′-O-silyl-2′-O-orthoester protecting groups. J. Am. Chem. Soc. 120, 11820–11821 (1998).

    Article  CAS  Google Scholar 

  5. Mäde, V., Els-Heindl, S. & Beck-Sickinger, A. G. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J. Org. Chem. 10, 1197–1212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kröck, L. et al. Streamlined access to conjugation-ready glycans by automated synthesis. Chem. Sci. 3, 1617–1622 (2012).

    Article  Google Scholar 

  7. Seeberger, P. H. & Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Lashkari, D. A., Hunicke-Smith, S. P., Norgren, R. M., Davis, R. W. & Brennan, T. An automated multiplex oligonucleotide synthesizer: development of high-throughput, low-cost DNA synthesis. Proc. Natl Acad. Sci. USA 92, 7912–7915 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Seeberger, P. H. Automated oligosaccharide synthesis. Chem. Soc. Rev. 37, 19–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Dömling, A. & Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 39, 3168–3210 (2000).

    Article  Google Scholar 

  11. Zhu, J., Qian, W. & Mei-Xiang, W. Multicomponent Reactions in Organic Synthesis (Wiley, 2015).

  12. Ruijter, E., Scheffelaar, R. & Orru, R. V. A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. 50, 6234–6246 (2011).

    Article  CAS  Google Scholar 

  13. Brauch, S., van Berkel, S. S. & Westermann, B. Higher-order multicomponent reactions: beyond four reactants. Chem. Soc. Rev. 42, 4948–4962 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Toure, B. B. & Hall, D. G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 109, 4439–4486 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Kreye, O., Tóth, T. & Meier, M. A. R. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J. Am. Chem. Soc. 133, 1790–1792 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Reguera, L., Méndez, Y., Humpierre, A. R., Valdés, O. & Rivera, D. G. Multicomponent reactions in ligation and bioconjugation chemistry. Acc. Chem. Res. 51, 1475–1486 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Dömling, A., Wang, W. & Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Slobbe, P., Ruijter, E. & Orru, R. V. A. Recent applications of multicomponent reactions in medicinal chemistry. Med. Chem. Commun 3, 1189–1218 (2012).

    Article  CAS  Google Scholar 

  19. Dax, S. L., McNally, J. J. & Youngman, M. A. Multi-component methodologies in solid-phase organic synthesis. Curr. Med. Chem. 6, 255–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Banfi, L., Guanti, G., Riva, R. & Basso, A. Multicomponent reactions in solid-phase synthesis. Curr. Opin. Drug Discov. Dev. 10, 704–714 (2007).

    CAS  Google Scholar 

  21. Reguera, L. & Rivera, D. G. Multicomponent reaction toolbox for peptide macrocyclization and stapling. Chem. Rev. 119, 9836–9860 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Ugi, I. Versuche mit Isonitrilen. Angew. Chem. Int. Ed. 71, 386–386 (1959).

    Google Scholar 

  23. Paserini, M. & Simone, L. Sopra gli isonitrili (I). Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz. Chim. Ital. 51, 126–129 (1921).

    Google Scholar 

  24. Petasis, N. A. & Akrltopoulou, I. The boronic acid Mannich reaction: a new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett. 34, 583–586 (1993).

    Article  CAS  Google Scholar 

  25. Isidro-Llobet, A., Álvarez, M. & Albericio, F. Amino acid-protecting groups. Chem. Rev. 109, 2455–2504 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Banfi, L. & Riva, R. The Passerini reaction. Org. React 65, 1–140 (2005).

    CAS  Google Scholar 

  27. Chatterjee, J., Rechenmacher, F. & Kessler, H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew. Chem. Int. Ed. 52, 254–269 (2013).

    Article  CAS  Google Scholar 

  28. Morales, F. E. et al. Aminocatalysis-mediated on-resin Ugi reactions: application in the solid-phase synthesis of N-substituted and tetrazolo lipopeptides and peptidosteroids. Org. Lett. 17, 2728–2731 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Alsina, J. & Albericio, F. Solid-phase synthesis of C-terminal modified peptides. Biopolymers 71, 454–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Fernández-Llamazares, A. I., Spengler, J. & Albericio, F. Review rackbone N-modified peptides: how to meet the challenge of secondary amine acylation. Pept. Sci. 104, 435–452 (2015).

    Article  Google Scholar 

  31. Palomo, J. M. Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. RSC Adv. 4, 32658–32672 (2014).

    Article  CAS  Google Scholar 

  32. Puentes, A. R., Morejón, M. C., Rivera, D. G. & Wessjohann, L. A. Peptide macrocyclization assisted by traceless turn inducers derived from Ugi peptide ligation with cleavable and resin-linked amines. Org. Lett. 19, 4022–4025 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Morejón, M. C., Laub, A., Westermann, B., Rivera, D. G. & Wessjohann, L. A. Solution-and solid-phase macrocyclization of peptides by the Ugi–Smiles multicomponent reaction: synthesis of N-aryl-bridged cyclic lipopeptides. Org. Lett. 18, 4096–4099 (2016).

    Article  PubMed  Google Scholar 

  34. Vasco, A. V. et al. A multicomponent stapling approach to exocyclic functionalized helical peptides: adding lipids, sugars, PEGs, labels, and handles to the lactam bridge. Bioconjug. Chem. 30, 253–259 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Vasco, A. V. et al. Synthesis of lactam-bridged and lipidated cyclo-peptides as promising anti-phytopathogenic agents. Molecules 25, 811 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  36. Hili, R., Rai, V. & Yudin, A. K. Macrocyclization of linear peptides enabled by amphoteric molecules. J. Am. Chem. Soc. 132, 2889–2891 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Treder, A. P. et al. Solid-phase parallel synthesis of functionalised medium-to-large cyclic peptidomimetics through three-component coupling driven by aziridine aldehyde dimers. Chem. Eur. J. 21, 9249–9255 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Bucci, R. et al. On-resin multicomponent 1,3-dipolar cycloaddition of cyclopentanone–proline enamines and sulfonylazides as an efficient tool for the synthesis of amidino depsipeptide mimics. Amino Acids 52, 15–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Jad, Y. E., Gudimella, S. K., Govender, T., de la Torre, B. G. & Albericio, F. Solid-phase synthesis of pyrrole derivatives through a multicomponent reaction involving Lys-containing peptides. ACS Comb. Sci. 20, 187–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Estevez, V., Villacampa, M. & Menéndez, J. C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev. 39, 4402–4421 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Petasis, N. A. & Zavialov, I. A. A new and practical synthesis of α-amino acids from alkenyl boronic acids. J. Am. Chem. Soc. 119, 445–446 (1997).

    Article  CAS  Google Scholar 

  42. Ricardo, M. G., LLanes, D., Wessjohann, L. A. & Rivera, D. G. Introducing the Petasis reaction for the late-stage multicomponent diversification, labeling and stapling of peptides. Angew. Chem. Int. Ed. 58, 2700–2704 (2019).

    Article  CAS  Google Scholar 

  43. Cornier, P. G., Delpiccolo, C. M. L., Boggián, D. B. & Mata, E. G. Solid-phase Petasis multicomponent reaction for the generation of β-lactams 3-substituted with non-proteinogenic α-amino acids. Tetrahedron Lett. 54, 4742–4745 (2013).

    Article  CAS  Google Scholar 

  44. Candeias, N. R., Montalbano, F., Cal, P. M. S. D. & Gois, P. M. P. Boronic acids and esters in the Petasis-borono Mannich multicomponent reaction. Chem. Rev. 110, 6169–6193 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Yamaguchi, A., Kaldas, S. J., Appavoo, S. D., Diaz, D. B. & Yudin, A. K. Conformationally stable peptide macrocycles assembled using the Petasis borono-Mannich reaction. Chem. Commun. 55, 10567–10570 (2019).

    Article  CAS  Google Scholar 

  46. Zhang, J., Proulx, C., Tomberg, A. & Lubell, W. D. Multicomponent diversity-oriented synthesis of aza-lysine-peptide mimics. Org. Lett. 16, 298–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Peshkov, V. A., Pereshivko, O. P. & Van der Eycken, E. V. A walk around the A3-coupling. Chem. Soc. Rev. 41, 3790–3807 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Hansen, J., Diness, F. & Meldal, M. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles. Org. Biomol. Chem. 14, 3238–3245 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. So, W. H. & Xia, J. On-resin Passerini reaction toward C‑terminal photocaged peptides. Org. Lett. 22, 214–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Szymannski, W., Velema, W. A. & Feringa, B. L. Photocaging of carboxylic acids: a modular approach. Angew. Chem. Int. Ed. 53, 8682–8686 (2014).

    Article  Google Scholar 

  51. Pando, O. et al. The multiple multicomponent approach to natural product mimics: tubugis, N-substituted anticancer peptides with picomolar activity. J. Am. Chem. Soc. 133, 7692–7695 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Wessjohann, L. A., Neves Filho, R. A.W. & Rivera, D. G. in Isocyanide Chemistry—Applications in Synthesis and Materials Science (ed. Nenajdenko, V. G.) 233–262 (Wiley, 2012).

  53. Jobin, S. et al. Toward solid-phase peptide fragment ligation by a traceless-Ugi multicomponent reaction approach. Org. Biomol. Chem. 14, 11230–11237 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Dawson, P., Muir, T., Clark-Lewis, I. & Kent, S. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Pusterla, I. & Bode, J. W. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations. Nat. Chem. 7, 668–672 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Saxon, E., Armstrong, J. I. & Bertozzi, C. R. A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2, 2141–2143 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Jensen, K. J. et al. Peptides—Chemistry, Structure and Biology: Proceedings of the Fourteenth American Peptide Symposium (eds Kaumaya, P. T. P. & Hodges, R. S.) 30–32 (Mayflower Scientific, 1996).

  58. Jovin, S., Beaumont, C. & Biron, E. Development of a solid-phase traceless-Ugi multicomponent reaction for backbone anchoring and cyclic peptide synthesis. Pept. Sci. 111, e24044 (2018).

    Google Scholar 

  59. Ricardo, M. G., Marrero, J. F., Valdéz, O., Rivera, D. G. & Wessjohann, L. A. Peptide backbone stapling strategy enabled by the multicomponent incorporation of amide N-substituents. Chem. Eur. J. 25, 769–774 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Ricardo, M. G. et al. Improved stability and tunable functionalization of parallel β-sheets via multicomponent N-alkylation of the turn moiety. Angew. Chem Int. Ed. 59, 259–263 (2020).

    Article  CAS  Google Scholar 

  61. Patgiri, A., A. L. Jochim, A. L. & Arora, P. S. A hydrogen bond surrogate approach for stabilization of short peptide sequences in α-helical conformation. Acc. Chem. Res. 41, 1289–1300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ricardo, M. G., Vasco, A. V., Rivera, D. G. & Wessjohann, L. A. Stabilization of cyclic β-hairpins by Ugi reaction-derived N-alkylated peptides: the quest for functionalized β-turns. Org. Lett. 21, 7307–7310 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Patch, J. A., Kirshenbaum, K., Seurynck, S. L., Zuckermann, R. N. & Barron, A. E. Pseudo-Peptides in Drug Discovery (ed. Nielsen, P. E.) 1–30 (Wiley, 2004).

  64. Yoo, B. & Kirshenbaum, K. Peptoid architectures: elaboration, actuation, and application. Curr. Opin. Chem. Biol. 12, 714–721 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Kodadek, T. & McEnaney, P. J. Towards vast libraries of scaffold-diverse, conformationally constrained oligomers. Chem. Commun. 52, 6038–6059 (2016).

    Article  CAS  Google Scholar 

  66. Conradi, R. A., Hilgers, A. R., Ho, N. F. H. & Burton, P. S. The influence of peptide structure on transport across Caco-2 cells. II. Peptide bond modification which results in improved permeability. Pharm. Res. 9, 435–439 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Miller, S. M. et al. Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers. Bioorg. Med. Chem. Lett. 4, 2657–2662 (1994).

    Article  CAS  Google Scholar 

  68. Pels, K. & Kodadek, T. Solid-phase synthesis of diverse peptide tertiary amides by reductive amination. ACS Comb. Sci. 17, 152–155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rivera, D. G. et al. A multiple multicomponent approach to chimeric peptide–peptoid podands. Chem. Eur. J. 19, 6417–6428 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, X. et al. Ugi reaction of natural amino acids: a general route toward facile synthesis of polypeptoids for bioapplications. ACS Macro Lett. 5, 1049–1054 (2016).

    Article  CAS  Google Scholar 

  71. Vercillo, O. E., Andrade, C. K. Z. & Wessjohann, L. A. Design and synthesis of cyclic RGD pentapeptoids by consecutive Ugi reactions. Org. Lett. 10, 205–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Constabel, F. & Ugi, I. Repetitive Ugi reactions. Tetrahedron 57, 5785–5789 (2001).

    Article  CAS  Google Scholar 

  73. Wessjohann, L. A., Phuong, T. T. & Westermann, B. Method for producing condensation products from N-substituted glycine derivatives by sequential Ugi-multicomponent reactions for use as pharmaceutical substances. PTC International Patent Application 2008022800. Chem. Abstr. 148, 285479 (2008).

    Google Scholar 

  74. Hartweg, M. et al. Ugi multicomponent reaction to prepare peptide-peptoid hybrid structures with diverse chemical functionalities. Polym. Chem. 9, 482–489 (2018).

    Article  CAS  Google Scholar 

  75. Dömling, A., Chi, K. Z. & Barrere, M. A novel method to highly versatile monomeric PNA building blocks by multi component reactions. Bioorg. Med. Chem. Lett. 9, 2871–2874 (1999).

    Article  PubMed  Google Scholar 

  76. Maison, W., Schlemminger, I., Westerhoff, O. & Martens, J. Multicomponent synthesis of novel amino acid-nucleobase chimeras: a versatile approach to PNA-monomers. Bioorg. Med. Chem. 8, 1343–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Xu, P. et al. Synthesis of PNA monomers and dimers by Ugi four-component reaction. Synthesis 8, 1171–1176 (2003).

    Article  Google Scholar 

  78. Saarbach, J., Masi, D., Zambaldo, C. & Winssinger, N. Facile access to modified and functionalized PNAs through Ugi-based solid phase oligomerization. Bioorg. Med. Chem. 25, 5171–5177 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Dickson, P. & Kodadek, T. Chemical composition of DNA-encoded libraries, past present and future. Org. Biomol. Chem. 17, 4676–4688 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Potowski, M. et al. Screening of metal ions and organocatalysts on solid support-coupled DNA oligonucleotides guides design of DNA-encoded reactions. Chem. Sci. 10, 10481–10492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Potowski, M., Kunig, V. B. K., Losch, F. & Brunschweiger, A. Synthesis of DNA-coupled isoquinolones and pyrrolidines by solid phase ytterbium- and silver-mediated imine chemistry. Med. Chem. Commun 10, 1082–1093 (2019).

    Article  CAS  Google Scholar 

  84. Kunig, V. B. K., Ehrt, C., Dömling, A. & Brunschweiger, A. Isocyanide multicomponent reactions on solid-phase-coupled DNA oligonucleotides for encoded library synthesis. Org. Lett. 21, 7238–7243 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Potowski, M., Esken, R. & Brunschweiger, A. Translation of the copper/bipyridine-promoted Petasis reaction to solid-phase coupled DNA for encoded library synthesis. Bioorg. Med. Chem. 28, 115441–115448 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Ghashghaei, O., Masdeu, C., Alonso, C., Palacios, F. & Lavilla, R. Recent advances of the Povarov reaction in medicinal chemistry. Drug Discov. Today Technol. 29, 71–79 (2018).

    Article  PubMed  Google Scholar 

  87. Kunig, V. B. K. et al. TEAD–YAP interaction inhibitors and MDM2 binders from DNA-encoded indole-focused Ugi peptidomimetics. Angew. Chem. Int. Ed. 59, 20338–20342 (2020).

    Article  CAS  Google Scholar 

  88. Volkmer, R. Synthesis and application of peptide arrays: quo vadis SPOT technology. ChemBioChem 10, 1431–1442 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Lin, Q. & Blackwell, H. E. Rapid synthesis of diketopiperazine macroarrays via Ugi four-component reactions on planar solid supports. Chem. Commun. 27, 2884–2886 (2006).

    Article  Google Scholar 

  90. Ridder, B., Mattes, D. S., Nesterov-Mueller, A., Breitling, F. & Meier, M. A. R. Peptide array functionalization via the Ugi four-component reaction. Chem. Commun. 53, 5553–5556 (2017).

    Article  CAS  Google Scholar 

  91. Khan, M. et al. Recent advances in multicomponent reactions involving carbohydrates. RSC Adv. 5, 57883–57905 (2015).

    Article  CAS  Google Scholar 

  92. de Nooy, A. E. J., Masci, G. & Crescenzi, V. Versatile synthesis of polysaccharide hydrogels using the Passerini and Ugi multicomponent condensations. Macromolecules 32, 1318–1320 (1999).

    Article  Google Scholar 

  93. Méndez, Y. et al. Multicomponent polysaccharide–protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates. Chem. Sci. 9, 2581–2588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hauck, N. et al. Droplet-assisted microfluidic fabrication and characterization of multifunctional polysaccharide microgels formed by multicomponent reactions. Polymers 10, 1055 (2018).

    Article  PubMed Central  Google Scholar 

  95. Shulepov, I. D., Kozhikhova, K. V., Panfilova, Y. S., Ivantsova, M. N. & Mironov, M. A. One-pot synthesis of cross-linked sub-micron microgels from pure cellulose via the Ugi reaction and their application as emulsifiers. Cellulose 23, 2549–2559 (2016).

    Article  CAS  Google Scholar 

  96. Afshari, R. & Shaabani, A. Materials functionalization with multicomponent reactions: state of the art. ACS Comb. Sci. 20, 499–528 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Humpierre, A. R., et al. Expanding the scope of Ugi multicomponent bioconjugation to produce pneumococcal multivalent glycoconjugates as vaccine candidates Bioconjugate Chem. 31, 2231–2240 (2020)

  98. Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598 (1970).

    Article  CAS  PubMed  Google Scholar 

  99. Bayer, E. Towards the chemical synthesis of proteins. Angew. Chem. Int. Ed. 30, 113–129 (1991).

    Article  Google Scholar 

  100. Meldal, M. Pega: a flow stable polyethylene glycol dimethyl acrylamide copolymer for solid phase synthesis. Tetrahedron Lett. 33, 3077–3080 (1992).

    Article  CAS  Google Scholar 

  101. García-Martín, F. et al. ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J. Comb. Chem. 8, 213–220 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

D.G.R. is grateful to KU Leuven for a senior scientist fellowship and to VLIR-UOS (CU2018TEA458A101), Belgium, and DAAD, Germany, for ongoing financial support. A.V.V. acknowledges DAAD for a Ph.D. scholarship. E.V.V.d.E. has been supported by the RUDN University Strategic Academic Leadership Program.

Author information

Authors and Affiliations

Authors

Contributions

D.G.R. conceived the idea in cooperation with L.A.W. and E.V.V.d.E. and drafted the outline. M.G.R and A.V.V carried out the literature survey and contributed to the design of figures, the selection of key experimental details to highlight, and general editing. All five authors contributed to the writing of the different sections, and the assembly and revision of the manuscript.

Corresponding authors

Correspondence to Daniel G. Rivera, Ludger A. Wessjohann or Erik V. Van der Eycken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Romano Orru and Zhigang Xu for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references used in this review

Morales, F. E. et al. Org. Lett. 17, 2728–2731 (2015): https://pubs.acs.org/doi/abs/10.1021/acs.orglett.5b01147

Ricardo, M. G., Marrero, J. F., Valdéz, O., Rivera, D. G. & Wessjohann, L. A. Chem. Eur. J. 25, 769−774 (2019): https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201805318

Ricardo, M. G., Llanes, D., Wessjohann, L. A. & Rivera, D. G. Angew. Chem. Int. Ed. 58, 2700–2704 (2019): https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201812620

Ricardo, M. G. et al. Angew. Chem Int. Ed. 59, 259–263 (2020): https://onlinelibrary.wiley.com/doi/full/10.1002/ange.201912095

Kunig, V. B. K., Ehrt, C., Dömling, A. & Brunschweiger, A. Org. Lett. 21, 7238−7243 (2019): https://pubs.acs.org/doi/abs/10.1021/acs.orglett.9b02448

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, D.G., Ricardo, M.G., Vasco, A.V. et al. On-resin multicomponent protocols for biopolymer assembly and derivatization. Nat Protoc 16, 561–578 (2021). https://doi.org/10.1038/s41596-020-00445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00445-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing