Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes

Abstract

Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous microfluidic approaches for producing perfusable hydrogel microtubes with diverse biomimetic sizes and shapes. Here, we provide a detailed protocol describing the construction of the microtube spinning platforms, the assembly of microfluidic devices, and the fabrication and characterization of various perfusable hydrogel microtubes. The hydrogel microtubes can be continuously generated from microfluidic devices due to the crosslinking of alginate by calcium in the coaxial flows and collecting bath. Owing to the mild all-aqueous spinning process, cells can be loaded into the alginate prepolymer for microtube spinning, which enables the direct production of cell-laden hydrogel microtubes. By manipulating the fluid dynamics at the microscale, the composable microfluidic devices and platforms can be used for the facile generation of six types of biomimetic perfusable microtubes. The microfluidic platforms and devices can be set up within 3 h from commonly available and inexpensive materials. After 10–20 min required to adjust the platform and fluids, perfusable hydrogel microtubes can be generated continuously. We describe how to characterize the microtubes using scanning electron or confocal microscopy. As an example application, we describe how the microtubes can be used for the preparation of a vascular lumen and how to perform barrier permeability tests of the vascular lumen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the microfluidic platform and the generated microtubes.
Fig. 2: Schematic representation of the assembly of the microfluidic devices.
Fig. 3: Spinning of microtubes with a straight or helical channel.
Fig. 4: Spinning of microtubes with double helical, double folded, straight-folded, or double straight channels.
Fig. 5: Spinning of microtubes with gas cavities and a straight channel.
Fig. 6: Spinning of microtubes with various knots.
Fig. 7: Representative images of the generated hydrogel microtubes.
Fig. 8: Representative images of cell-laden microtubes.
Fig. 9: Applications of the hydrogel microtubes.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Jacob, M., Chappell, D. & Becker, B. F. Regulation of blood flow and volume exchange across the microcirculation. Crit. Care 20, 319 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Pellegata, A. F., Tedeschi, A. M. & De Coppi, P. Whole organ tissue vascularization: engineering the tree to develop the fruits. Front. Bioeng. Biotechnol. 6, 56 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. de Bono, B., Grenon, P., Baldock, R. & Hunter, P. Functional tissue units and their primary tissue motifs in multi-scale physiology. J. Biomed. Semant. 4, 22 (2013).

    Google Scholar 

  4. Pollak, M. R., Quaggin, S. E., Hoenig, M. P. & Dworkin, L. D. The glomerulus: the sphere of influence. Clin. J. Am. Soc. Nephrol. 9, 1461–1469 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Weibel, E. R. Morphological basis of alveolar-capillary gas exchange. Physiol. Rev. 53, 419–495 (1973).

    CAS  PubMed  Google Scholar 

  6. Rappaport, A. M. & Wilson, W. D. The stuctural and functional unit in the human liver (liver acinus). Anat. Rec. 130, 673–689 (1958).

    CAS  PubMed  Google Scholar 

  7. Weber, G. M., Ju, Y. & Börner, K. Considerations for using the vasculature as a coordinate system to map all the cells in the human body. Front. Cardiovasc. Med. 7, 29 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Yang, J., Yu, L. X., Rennie, M. Y., Sled, J. G. & Henkelman, R. M. Comparative structural and hemodynamic analysis of vascular trees. Am. J. Physiol. Heart Circ. Physiol. 298, H1249–H1259 (2010).

    CAS  PubMed  Google Scholar 

  9. Niu, L. et al. Influence of vascular geometry on local hemodynamic parameters: phantom and small rodent study. Biomed. Eng. Online 17, 30 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Kim, B. J. et al. Basilar artery plaque and pontine infarction location and vascular geometry. J. Stroke 20, 92 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Pijnenborg, R., Vercruysse, L. & Hanssens, M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27, 939–958 (2006).

    CAS  PubMed  Google Scholar 

  12. Tan, J., Shah, S., Thomas, A., Ou-Yang, H. D. & Liu, Y. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid. Nanofluidics 14, 77–87 (2013).

    CAS  PubMed  Google Scholar 

  13. Rouwkema, J. & Khademhosseini, A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 34, 733–745 (2016).

    CAS  PubMed  Google Scholar 

  14. Ai, Y., Zhang, F., Wang, C., Xie, R. & Liang, Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC Trends Anal. Chem. 117, 215–230 (2019).

    CAS  Google Scholar 

  15. Xie, R., Zheng, W., Guan, L., Ai, Y. & Liang, Q. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small 15, 1902838 (2019).

    Google Scholar 

  16. Zheng, F. et al. Organ-on-a-chip systems: microengineering to biomimic living systems. Small 12, 2253–2282 (2016).

    CAS  PubMed  Google Scholar 

  17. Khademhosseini, A. & Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials 28, 5087–5092 (2007).

    CAS  PubMed  Google Scholar 

  18. Li, L. et al. Simultaneous assay of oxygen-dependent cytotoxicity and genotoxicity of anticancer drugs on an integrated microchip. Anal. Chem. 90, 11899–11907 (2018).

    CAS  PubMed  Google Scholar 

  19. Wang, W., Li, L., Ding, M., Luo, G. & Liang, Q. A microfluidic hydrogel chip with orthogonal dual gradients of matrix stiffness and oxygen for cytotoxicity test. BioChip J. 12, 93–101 (2018).

    CAS  Google Scholar 

  20. Liang, Z. et al. Double-network hydrogel with tunable mechanical performance and biocompatibility for the fabrication of stem cells-encapsulated fibers and 3D assemble. Sci. Rep. 6, 33462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shin, Y. et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protoc. 7, 1247–1259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, C. et al. Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers. Chin. Chem. Lett. 30, 457–460 (2019).

    CAS  Google Scholar 

  23. Van Vlierberghe, S., Dubruel, P. & Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12, 1387–1408 (2011).

    PubMed  Google Scholar 

  24. Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Liang, Z., Liu, Y., Zhang, F., Ai, Y. & Liang, Q. Dehydration-triggered shape morphing based on asymmetric bubble hydrogel microfibers. Soft Matter 14, 6623–6626 (2018).

    CAS  PubMed  Google Scholar 

  26. Liu, Y. et al. Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology. RSC Adv. 8, 23475–23480 (2018).

    CAS  Google Scholar 

  27. Xie, R. et al. h-FIBER: microfluidic topographical hollow fiber for studies of glomerular filtration barrier. ACS Cent. Sci. 6, 903–912 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie, R. et al. Necklace-like microfibers with variable knots and perfusable channels fabricated by an oil-free microfluidic spinning process. Adv. Mater. 30, 1705082 (2018).

    Google Scholar 

  29. Xu, P. et al. Bioinspired microfibers with embedded perfusable helical channels. Adv. Mater. 29, 1701664 (2017).

    Google Scholar 

  30. Luo, X., Su, P., Zhang, W. & Raston, C. L. Microfluidic devices in fabricating nano or micromaterials for biomedical applications. Adv. Mater. Technol. 4, 1900488 (2019).

    CAS  Google Scholar 

  31. Jun, Y., Kang, E., Chae, S. & Lee, S. Microfluidic spinning of micro-and nano-scale fibers for tissue engineering. Lab Chip 14, 2145–2160 (2014).

    CAS  PubMed  Google Scholar 

  32. Zhu, A. & Guo, M. Microfluidic controlled mass-transfer and buckling for easy fabrication of polymeric helical fibers. Macromol. Rapid Commun. 37, 426–432 (2016).

    CAS  PubMed  Google Scholar 

  33. Hwang, C. M. et al. Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed. Microdevices 11, 739–746 (2009).

    CAS  PubMed  Google Scholar 

  34. Bai, Z., Mendoza Reyes, J. M., Montazami, R. & Hashemi, N. On-chip development of hydrogel microfibers from round to square/ribbon shape. J. Mater. Chem. A 2, 4878 (2014).

    CAS  Google Scholar 

  35. Cho, S., Shim, T. S. & Yang, S. High-throughput optofluidic platforms for mosaicked microfibers toward multiplex analysis of biomolecules. Lab Chip 12, 3676 (2012).

    CAS  PubMed  Google Scholar 

  36. Lee, K. H. et al. Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip. Lab Chip 10, 1328 (2010).

    CAS  PubMed  Google Scholar 

  37. Onoe, H. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584–590 (2013).

    CAS  PubMed  Google Scholar 

  38. Hu, M. et al. Hydrodynamic spinning of hydrogel fibers. Biomaterials 31, 863–869 (2010).

    CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. A 3D construct of the intestinal canal with wrinkle morphology on a centrifugation configuring microfluidic chip. Biofabrication 11, 045001 (2019).

    PubMed  Google Scholar 

  40. Ma, L. et al. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip 18, 2547–2562 (2018).

    CAS  PubMed  Google Scholar 

  41. Kang, E. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10, 877–883 (2011).

    CAS  PubMed  Google Scholar 

  42. Yu, Y. et al. Simple spinning of heterogeneous hollow microfibers on chip. Adv. Mater. 28, 6649–6655 (2016).

    CAS  PubMed  Google Scholar 

  43. Lee, K. H., Shin, S. J., Park, Y. & Lee, S. Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small 5, 1264–1268 (2009).

    CAS  PubMed  Google Scholar 

  44. Jeong, W. et al. Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab Chip 4, 576–580 (2004).

    CAS  PubMed  Google Scholar 

  45. Yu, Y., Shang, L., Guo, J., Wang, J. & Zhao, Y. Design of capillary microfluidics for spinning cell-laden microfibers. Nat. Protoc. 13, 2557–2579 (2018).

    CAS  PubMed  Google Scholar 

  46. Meng, Z. et al. Microfluidic generation of hollow Ca-alginate microfibers. Lab Chip 16, 2673–2681 (2016).

    CAS  PubMed  Google Scholar 

  47. Gao, C., Wang, X., Du, Q., Tang, J. & Jiang, J. Generation of perfusable hollow calcium alginate microfibers with a double co-axial flow capillary microfluidic device. Biomicrofluidics 13, 064108 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    CAS  PubMed  Google Scholar 

  49. Liau, B., Bursac, N., Bian, W. & Badie, N. Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat. Protoc. 4, 1522–1534 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Qiu, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. 2, 453–463 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi, N. W. et al. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908 (2007).

    CAS  PubMed  Google Scholar 

  52. Chrobak, K. M., Potter, D. R. & Tien, J. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185–196 (2006).

    CAS  PubMed  Google Scholar 

  53. Li, X. et al. Engineering of microscale vascularized fat that responds to perfusion with lipoactive hormones. Biofabrication 11, 014101 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Polacheck, W. J., Kutys, M. L., Tefft, J. B. & Chen, C. S. Microfabricated blood vessels for modeling the vascular transport barrier. Nat. Protoc. 14, 1425–1454 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mori, N., Morimoto, Y. & Takeuchi, S. Skin integrated with perfusable vascular channels on a chip. Biomaterials 116, 48–56 (2017).

    CAS  PubMed  Google Scholar 

  56. Mannino, R. G. et al. 3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro. Lab Chip 17, 407–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Golden, A. P. & Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7, 720–725 (2007).

    CAS  PubMed  Google Scholar 

  58. Tocchio, A. et al. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Biomaterials 45, 124–131 (2015).

    CAS  PubMed  Google Scholar 

  59. Wang, X. et al. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab Chip 14, 2709–2716 (2014).

    CAS  PubMed  Google Scholar 

  60. Hu, M. et al. Facile engineering of long-term culturable ex vivo vascularized tissues using biologically derived matrices. Adv. Healthcare Mater. 7, 1800845 (2018).

    Google Scholar 

  61. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    CAS  PubMed  Google Scholar 

  63. Kang, H. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312 (2016).

    CAS  PubMed  Google Scholar 

  64. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    CAS  PubMed  Google Scholar 

  65. Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, 1500758 (2015).

    Google Scholar 

  66. Song, K. H., Highley, C. B., Rouff, A. & Burdick, J. A. Complex 3D-printed microchannels within cell‐degradable hydrogels. Adv. Funct. Mater. 28, 1801331 (2018).

    Google Scholar 

  67. Wu, W., DeConinck, A. & Lewis, J. A. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, 178–183 (2011).

    Google Scholar 

  68. Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self‐healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).

    CAS  PubMed  Google Scholar 

  69. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS  PubMed  Google Scholar 

  70. Bhattacharjee, T. et al. Writing in the granular gel medium. Sci. Adv. 1, 1500655 (2015).

    Google Scholar 

  71. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, 2459 (2019).

    Google Scholar 

  72. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Xue, D. et al. Projection-based 3D printing of cell patterning scaffolds with multiscale channels. ACS Appl. Mater. Interfaces 10, 19428–19435 (2018).

    CAS  PubMed  Google Scholar 

  74. Zhang, R. & Larsen, N. B. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab Chip 17, 4273–4282 (2017).

    CAS  PubMed  Google Scholar 

  75. Zhang, A. P. et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24, 4266–4270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, W. et al. The bioprinting roadmap. Biofabrication 12, 022002 (2020).

    CAS  PubMed  Google Scholar 

  77. Tian, Y. et al. Large-scale water collection of bioinspired cavity-microfibers. Nat. Commun. 8, 1–9 (2017).

    Google Scholar 

  78. Ji, X., Guo, S., Zeng, C., Wang, C. & Zhang, L. Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device. RSC Adv. 5, 2517–2522 (2015).

    CAS  Google Scholar 

  79. Cheng, Y. et al. Bioinspired multicompartmental microfibers from microfluidics. Adv. Mater. 26, 5184–5190 (2014).

    CAS  PubMed  Google Scholar 

  80. Kang, E. et al. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv. Mater. 24, 4271–4277 (2012).

    CAS  PubMed  Google Scholar 

  81. Mulivor, A.W., Shevkoplyas, S., Sun, C., Bitensky, M.W. & Munn, L.L. Blood dynamics in microfabricated vessel networks. in Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show Vol. 2 (NSTI Nanotechnology, 2006).

  82. Han, H. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 49, 185–197 (2012).

    PubMed  PubMed Central  Google Scholar 

  83. Pedersen-Bjergaard, S. & Rasmussen, K. E. Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. J. Chromatogr. A 1184, 132–142 (2008).

    CAS  PubMed  Google Scholar 

  84. Wang, X., Feng, J. I., Bai, Y., Zhang, Q. & Yin, Y. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116, 10983–11060 (2016).

    CAS  PubMed  Google Scholar 

  85. Ai, Y., Xie, R., Xiong, J. & Liang, Q. Microfluidics for bio-synthesizing: from droplets and vesicles to artificial cells. Small 15, 1903940 (2019).

    Google Scholar 

  86. Dong, R., Liu, Y., Mou, L., Deng, J. & Jiang, X. Microfluidics-based biomaterials and biodevices. Adv. Mater. 31, 1805033 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 81872835, 21621003), the Innovation Zone Project (18-163-12-ZT-003-077-01), and Health Major Project (BWS17J028, AWS16J018).

Author information

Authors and Affiliations

Authors

Contributions

Q.L, R.X., Z.L., P.X., and Y.L. designed and performed the experiment; R.X. prepared the figures of the protocol; R.X. and Q.L wrote the protocol; Y.A, W.Z., J.X., M.D., J.G., and J.W. contributed to the discussion of the protocol.

Corresponding author

Correspondence to Qionglin Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Protocols thanks Nicole Hashemi, Munenori Numata, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Xu, P. et al. Adv. Mater. 29, 1701664 (2017): https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201701664

Xie, R. et al. Adv. Mater. 30, 1705082 (2018): https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201705082

Liu, Y. et al. RSC Adv. 8, 23475 (2018): https://pubs.rsc.org/en/content/articlelanding/ra/2018/c8ra04192j

Xie, R. et al. ACS Cent. Sci. 6, 903 (2020): https://pubs.acs.org/doi/abs/10.1021/acscentsci.9b01097

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Data 1

AutoCAD file of the master mold for the custom-designed 96-well base plate.

Source data

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 9

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, R., Liang, Z., Ai, Y. et al. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nat Protoc 16, 937–964 (2021). https://doi.org/10.1038/s41596-020-00442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00442-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research