Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The isolation and molecular characterization of cerebral microvessels

Abstract

The study of cerebral microvessels is becoming increasingly important in a wide variety of conditions, such as stroke, sepsis, traumatic brain injury and neurodegenerative diseases. However, the molecular mechanisms underlying cerebral microvascular dysfunction in these conditions are largely unknown. The molecular characterization of cerebral microvessels in experimental disease models has been hindered by the lack of a standardized method to reproducibly isolate intact cerebral microvessels with consistent cellular compositions and without the use of enzymatic digestion, which causes undesirable molecular and metabolic changes. Herein, we describe an optimized protocol for microvessel isolation from mouse brain cortex that yields microvessel fragments with consistent populations of discrete blood–brain barrier (BBB) components (endothelial cells, pericytes and astrocyte end feet) while retaining high RNA integrity and protein post-translational modifications (e.g., phosphorylation). We demonstrate that this protocol allows the quantification of changes in gene expression in a disease model (stroke) and the activation of signaling pathways in mice subjected to drug administration in vivo. We also describe the isolation of genomic DNA (gDNA) and bisulfite treatment for the assessment of DNA methylation, as well as the optimization of chromatin extraction and shearing from cortical microvessels. This optimized protocol and the described applications should improve the understanding of the molecular mechanisms governing cerebral microvascular dysfunction, which may help in the development of novel therapies for stroke and other neurologic conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cortical microvessel isolation protocol overview.
Fig. 2: Characterization of microvessel preparations: purity, structural features (size) and consistency in cellular composition.
Fig. 3: Morphological characterization of microvessel preparations: structural integrity and cell composition.
Fig. 4: Characterization of microvessel fragments: size and α-SMA content.
Fig. 5: Impact of the microvessel isolation method on RNA integrity and sample-to-sample variation.
Fig. 6: Quantification of changes in gene expression in cerebral microvessels after stroke.
Fig. 7: Quantification of phospho-Ser473 Akt levels in cerebral microvessels in wild-type mice after administration of the S1PR2 antagonist JTE-013.
Fig. 8: Detection of DNA methylation in Bdnf, S1pr2 and S1pr1 promoter regions in microvessels and whole brain.
Fig. 9: Optimization of chromatin extraction and shearing from cortical microvessels.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. No datasets were generated or analyzed during the current study.

References

  1. Zlokovic, B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Shi, Y. et al. Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat. Commun. 7, 10523 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackman, K. et al. Progranulin deficiency promotes post-ischemic blood-brain barrier disruption. J. Neurosci. 33, 19579–19589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Montagne, A. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nation, D. A. et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

  7. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo, S. et al. The vasculome of the mouse brain. PLoS ONE 7, e52665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daneman, R. et al. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS ONE 5, e13741 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. He, L. et al. Analysis of the brain mural cell transcriptome. Sci. Rep. 6, 35108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paolinelli, R. et al. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS ONE 8, e70233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruck, T., Bittner, S., Epping, L., Herrmann, A. M. & Meuth, S. G. Isolation of primary murine brain microvascular endothelial cells. J. Vis. Exp. 2014, e52204 (2014).

  13. Aird, W. C. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2, a006429 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Regan, E. R. & Aird, W. C. Dynamical systems approach to endothelial heterogeneity. Circ. Res. 111, 110–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, Z., Hofman, F. M. & Zlokovic, B. V. A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J. Neurosci. Methods 130, 53–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Munikoti, V. V., Hoang-Minh, L. B. & Ormerod, B. K. Enzymatic digestion improves the purity of harvested cerebral microvessels. J. Neurosci. Methods 207, 80–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Boulay, A. C., Saubamea, B., Decleves, X. & Cohen-Salmon, M. Purification of mouse brain vessels. J. Vis. Exp. 2015, e53208 (2015).

  18. Yousif, S., Marie-Claire, C., Roux, F., Scherrmann, J. M. & Decleves, X. Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Res. 1134, 1–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, G. S. et al. Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat. Commun. 6, 7893 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yanagida, K. et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc. Natl. Acad. Sci. USA 114, 4531–4536 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan, Y. et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J. Biol. Chem. 279, 35087–35100 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Zaina, S. et al. DNA methylation map of human atherosclerosis. Circ. Cardiovasc. Genet. 7, 692–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, Y. Z., Manduchi, E., Stoeckert, C. J. Jr. & Davies, P. F. Arterial endothelial methylome: differential DNA methylation in athero-susceptible disturbed flow regions in vivo. BMC Genomics 16, 506 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dunn, J. et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J. Clin. Invest. 124, 3187–3199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bowyer, J. F. et al. A visual description of the dissection of the cerebral surface vasculature and associated meninges and the choroid plexus from rat brain. J. Vis. Exp. 2012, e4285 (2012).

  29. Kono, M. et al. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J. Biol. Chem. 279, 29367–29373 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. del Zoppo, G. J. & Mabuchi, T. Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow. Metab. 23, 879–894 (2003).

    Article  PubMed  Google Scholar 

  31. Faraci, F. M. Vascular protection. Stroke 34, 327–329 (2003).

    Article  PubMed  Google Scholar 

  32. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Terasaki, Y. et al. Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr. Med. Chem. 21, 2035–2042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez, T. Sphingosine-1-phosphate signaling in endothelial disorders. Curr. Atheroscler. Rep. 18, 31 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, G. et al. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood 122, 443–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernandez-Lopez, D. et al. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J. Neurosci. 32, 9588–9600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bazzoni, G. & Dejana, E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol. Rev. 84, 869–901 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Luissint, A. C., Artus, C., Glacial, F., Ganeshamoorthy, K. & Couraud, P. O. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 9, 23 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mark, K. S. & Davis, T. P. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol. 282, H1485–1494 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, J., Jin, X., Liu, K. J. & Liu, W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J. Neurosci. 32, 3044–3057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McColl, B. W., Rothwell, N. J. & Allan, S. M. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J. Neurosci. 28, 9451–9462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Venkataraman, K. et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102, 669–676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanchez, T. et al. PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 102, 4312–4317 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Z. et al. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7, 399–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Wolfrum, S. et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler. Thromb. Vasc. Biol. 24, 1842–1847 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanchez, T. et al. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler. Thromb. Vasc. Biol. 27, 1312–1318 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Ma, D. K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nelson, J. D., Denisenko, O. & Bomsztyk, K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179–185 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the American Heart Association (Grant-in-Aid, 12GRNT12050110), the NIH (HL094465) and the Leducq Foundation (14CVD02) to T.S. A.I. was supported by a grant from the Roche Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.S. and T.S. designed the protocol. T.S., H.S., Y.-K.L. and H.U. modified and updated the protocol to its current state. A.I. conducted the stroke surgeries. H.U. conducted the in vivo pharmacological treatments. Y.-K.L. and H.U. optimized and conducted the molecular assays with cerebral microvessels, as well as the immunofluorescence analysis. H.U., Y.-K.L., H.S. and T.S. wrote the manuscript with contributions from all the authors.

Corresponding author

Correspondence to Teresa Sanchez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Xavier Declèves, Sven Meuth and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key reference using this protocol

Yanagida, K. et al. Proc. Natl. Acad. Sci. USA 114, 4531–4536 (2017): https://doi.org/10.1073/pnas.1618659114

Integrated supplementary information

Supplementary Figure 1

Images of full-length blots presented in the figures.

Supplementary information

Supplementary Information

Supplementary Figure 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YK., Uchida, H., Smith, H. et al. The isolation and molecular characterization of cerebral microvessels. Nat Protoc 14, 3059–3081 (2019). https://doi.org/10.1038/s41596-019-0212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0212-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing