Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture

Abstract

Morphology-controlled nanomaterials such as silica play a critical role in the development of technologies for use in the fields of energy, environment (water and air pollution) and health. Since the discovery of Stöber’s silica, followed by the discovery of mesoporous silica materials (MSNs) such as MCM-41 and SBA-15, a surge in the design and synthesis of nanosilica with various sizes, shapes, morphologies and textural properties (surface area, pore size and pore volume) has occurred. Dendritic fibrous nanosilica (DFNS; also known as KCC-1) is one of the recent discoveries in morphology-controlled nanomaterials. DFNS shows exceptional performance in large numbers of fields, including catalysis, gas capture, solar energy harvest, energy storage, sensors and biomedical applications. This material possesses a unique fibrous morphology, unlike the tubular porous structure of various conventional silica materials. It has a high surface area to volume ratio, with improved accessibility to the internal surface, tunable pore size and pore volume, controllable particle size and, importantly, improved stability. However, synthesis of DFNS with controllable size, textural properties and fiber density is still tricky because of several of the steps involved. This protocol provides a comprehensive step-wise description of DFNS synthesis and advice regarding how to control size, surface area, pore size, pore volume and fiber density. We also provide details of how to apply DFNS in catalysis and CO2 capture. Detailed characterization protocols for these materials using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and thermal gravimetric analysis (TGA) studies are also provided.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic illustration of DFNS synthesis.
Fig. 2
Fig. 3: SEM images and particle-size distribution.
Fig. 4: TEM images of synthesized DFNSs under different conditions at large scale.
Fig. 5: Characteristics of DFNSs.
Fig. 6: SEM images and particle-size distribution.
Fig. 7: TEM images of synthesized DFNSs using different co-surfactants at small scale.
Fig. 8: Characteristics of DFNSs.
Fig. 9
Fig. 10: Typical results seen for DFNS-TEPAads.
Fig. 11: Typical results seen for DFNS-NH2 and DFNS-NH2/Pd.
Fig. 12
Fig. 13: Typical results seen for DFNS-TEPAads.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. 1.

    Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Prieto, G. et al. Hollow nano- and microstructures as catalysts. Chem. Rev. 116, 14056–14119 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Beller, M., Renken, A. & van Santen, R. A. (eds) Catalysis: From Principles to Applications (Wiley-VCH, Weinheim, Germany, 2012).

  4. 4.

    Rothenberg, G. (ed.) Catalysis: Concepts and Green Applications (Wiley-VCH, Weinheim Germany, 2008).

  5. 5.

    Polshettiwar, V. & Asefa, T. (eds) Nanocatalysis: Synthesis and Applications (Wiley, Hoboken, NJ, 2013).

  6. 6.

    Coaty, C., Zhou, H., Liu, H. & Liu, P. A scalable synthesis pathway to nanoporous metal structures. ACS Nano 12, 432–440 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Xiao, X. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Williamson, C. B., Nevers, D. R., Hanrath, T. & Robinson, R. D. Prodigious effects of concentration intensification on nanoparticle synthesis: a high-quality, scalable approach. J. Am. Chem. Soc. 137, 15843–15851 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Choi, S., Kim, J., Choi, N. S., Kim, M. G. & Park, S. Cost-effective scalable synthesis of mesoporous germanium particles via a redox-transmetalation reaction for high-performance energy storage devices. ACS Nano 9, 2203–2212 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  11. 11.

    Li, S., Wan, Q., Qin, Z., Fu, Y. & Gu, Y. Understanding Stöber silica’s pore characteristics measured by gas adsorption. Langmuir 31, 824–832 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    CAS  Article  Google Scholar 

  13. 13.

    Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    Che, S. et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat. Mater. 2, 801–805 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    Yan, F. et al. A green and facile synthesis of ordered mesoporous nanosilica using coal fly ash. ACS Sustain. Chem. Eng. 4, 4654–4661 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Mçller, K. & Bein, T. Talented mesoporous silica nanoparticles. Chem. Mater. 29, 371–388 (2017).

    Article  Google Scholar 

  17. 17.

    Che, S. et al. Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    Yokoi, T. et al. Periodic arrangement of silica nanospheres assisted by amino acids. J. Am. Chem. Soc. 128, 13664–13665 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Gao, C., Sakamoto, Y., Sakamoto, K., Terasaki, O. & Che, S. Synthesis and characterization of mesoporous silica ams‐10 with bicontinuous cubic pnm symmetry. Angew. Chem. Int. Ed. 45, 4295–4298 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    Bao, Y., Shi, C., Wang, T., Li, X. & Ma, J. Recent progress in hollow silica: template synthesis, morphologies and applications. Microporous Mesoporous Mater. 227, 121–136 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Polshettiwar, V., Cha, D., Zhang, X. & Basset, J. M. High surface area silica nanospheres (KCC-1) with fibrous morphology. Angew. Chem. Int. Ed. 49, 9652–9656 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Bayal, N., Singh, B., Singh, R. & Polshettiwar, V. Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1). Sci. Rep. 6, 24888 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Maity, A., Das, A., Sen, D., Mazumder, S. & Polshettiwar, V. Unraveling the formation mechanism of dendritic fibrous nanosilica. Langmuir 33, 13774–13782 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Maity, A. & Polshettiwar, V. Scalable and sustainable synthesis of size controlled monodisperse DFNS quantified by E-factor. ACS Appl. Nano Mater. 1, 3636–3643 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Maity, A. & Polshettiwar, V. Dendritic fibrous nanosilica for catalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing. ChemSusChem 10, 3866–3913 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Singh, R., Bapat, R., Qin, L. J., Feng, H. & Polshettiwar, V. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal. 6, 2770–2784 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Maity, A., Mujumdar, S. & Polshettiwar, V. Self-Assembled photonic crystals of monodisperse dendritic fibrous nanosilica for lasing: role of fiber density. ACS Appl. Mater. Interfaces. 10, 23392–23398 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Bayal, N., Singh, R. & Polshettiwar, V. Nanostructured silica-titania hybrid using fibrous nanosilica as photocatalysts. ChemSusChem 10, 2182–2191 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Kundu, S. & Polshettiwar, V. Hydrothermal crystallization of nano-titanium dioxide for enhanced photocatalytic hydrogen generation. ChemPhotoChem 2, 796–800 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Singh, B., Maity, A. & Polshettiwar, V. Synthesis of high surface area carbon nanospheres with wrinkled cages and their CO2 capture studies. Chem. Select 3, 1–6 (2018).

    CAS  Google Scholar 

  31. 31.

    Singh, B. & Polshettiwar, V. Design of CO2 sorbents using functionalized fibrous nanosilica (KCC-1): insights into the effect of the silica morphology (KCC-1 vs. MCM-41). J. Mater. Chem. A 4, 7005–7019 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Huang, X. et al. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro. Langmuir 30, 10886–10889 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Patil, U., Fihri, A., Emwas, A. H. & Polshettiwar, V. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41: Unprecedented materials for CO2 capture with excellent stability and regenerability. Chem. Sci. 3, 2224–2229 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Thankamony, A. S. L. et al. Insights into the catalytic activity of nitridated fibrous silica (KCC-1) nanocatalysts from 15N and 29Si NMR enhanced by dynamic nuclear polarization. Angew. Chem. Int. Ed. 54, 2190–2193 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Polshettiwar, V. et al. “Hydro-metathesis” of olefins: a catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres. Angew. Chem. Int. Ed. 50, 2747–2751 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Fihri, A. et al. Fibrous nano-silica supported ruthenium (KCC-1/Ru): a sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime. ACS Catal. 2, 1425–1431 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Dhiman, M., Chalke, B. & Polshettiwar, V. Efficient synthesis of monodisperse metal (Rh, Ru, Pd) nanoparticles supported on fibrous nanosilica (KCC-1) for catalysis. ACS Sustain. Chem. Eng. 3, 3224–3230 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Dhiman, M., Chalke, B. & Polshettiwar, V. Organosilane oxidation with a half million turnover number using fibrous nanosilica supported ultrasmall nanoparticles and pseudo-single atoms of gold. J. Mater. Chem. A 5, 1935–1940 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Dhiman, M. & Polshettiwar, V. Ultrasmall nanoparticles and pseudo single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): engineering selectivity of hydrogenation reactions. J. Mat. Chem. A 4, 12416–12424 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Fihri, A., Cha, D., Bouhrara, M., Almana, N. & Polshettiwar, V. Fibrous nano-silica (KCC-1)-supported palladium satalyst: Suzuki coupling reactions under sustainable conditions. ChemSusChem 5, 85–89 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Jung, D., Kim, Y.-J. & Lee, J.-K. Novel strategy for maintenance of catalytic activity using wrinkled silica nanoparticle support in Fischer–Tropsch synthesis. Bull. Korean Chem. Soc. 37, 386–389 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Afzal, S., Quan, X., Chen, S., Wang, J. & Muhammad, D. Synthesis of manganese incorporated hierarchical mesoporous silicananosphere with fibrous morphology by facile one-pot approach for efficient catalytic ozonation. J. Hazard. Mater. 318, 308–318 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Tian, Y. et al. Fibrous porous silica microspheres decorated with Mn3O4 for effective removal of methyl orange from aqueous solution. RSC Adv. 5, 106068–106076 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Firmansyah, M. L. et al. Synthesis and characterization of fibrous silica ZSM‐5 for cumene hydrocracking. Catal. Sci. Technol. 6, 5178–5182 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Yang, Y. et al. Amphiphilic titanosilicates as pickering interfacial catalysts for liquid-phase oxidation reactions. J. Phys. Chem. C 119, 25377–25384 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Zhang, J., Zhang, M., Yang, C. & Wang, X. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Ryu, J., Yun, J., Lee, J., Lee, K. & Jang, J. Hierarchical mesoporous silica nanoparticles as superb light scattering materials. Chem. Commun. 52, 2165–2168 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Chen, R. et al. Polypyrrole confined in dendrimer-like silica nanoparticles for combined photothermal and chemotherapy of cancer. RSC Adv. 6, 38931–38942 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Du, X. et al. Broadband antireflective superhydrophobic selfcleaning coatings based on novel dendritic porous particles. RSC Adv. 6, 7864–7871 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Zhang, S. et al. Facile fabrication of dendritic mesoporous SiO2@CdTe@SiO2 fluorescent nanoparticles for bioimaging. Part. Part. Syst. Charact. 33, 261–270 (2016).

    CAS  Article  Google Scholar 

  51. 51.

    Choi, Y., Kwak, H. & Hong, S. Quantification of arsenic(III) in aqueous media using a novel hybrid platform comprised of radially porous silica particles and a gold thin film. Anal. Methods 6, 7054–7061 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Qu, Q., Min, Y., Zhang, L., Xu, Q. & Yin, Y. Silica microspheres with fibrous shells: synthesis and application in HPLC. Anal. Chem. 87, 9631–9638 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    Guo, D. et al. Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochim. Acta 176, 207–214 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Wang, Y. et al. Dendritic silica particles with well-dispersed ag nanoparticles for robust antireflective and antibacterial nanocoatings on polymeric glass. ACS Sustain. Chem. Eng. 6, 14071–14081 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Atomic Energy (DAE), Government of India. We would like to also thank Indo-France CEFIPRA and SHELL Industries for funding that partially supported this work. We acknowledge the EM, XRD and NMR Facility of TIFR, Mumbai.

Author information

Affiliations

Authors

Contributions

V.P. proposed the research direction and guided the project. A.M. and V.P. developed the protocol. A.M. and R.B. performed the experiments. A.M. and V.P. drafted the manuscript. All authors contributed to the manuscript. We thank S. Rawool and M. Dhiman for their support during the preparation of this protocol.

Corresponding author

Correspondence to Vivek Polshettiwar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Protocols thanks Ling Chao and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Maity, A. & Polshettiwar, V. ChemSusChem 10, 3866−3913 (2017): https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201701076

Polshettiwar, V., Cha, D., Zhang, X. & Basset, J. M. Angew. Chem. Int. Ed. 49, 9652−9656 (2010): https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201003451

Key data used in this protocol

Maity, A. & Polshettiwar, V. ACS Appl. Nano Mater. 1, 3636–3643 (2018): https://pubs.acs.org/doi/10.1021/acsanm.8b00761

Maity, A., Das, A., Sen, D., Mazumder, S. & Polshettiwar, V. Langmuir 33, 13774−13782 (2017): https://pubs.acs.org/doi/10.1021/acs.langmuir.7b02996

Singh, B. & Polshettiwar, V. J. Mater. Chem. A 4, 7005–7019 (2016): https://pubs.rsc.org/is/content/articlehtml/2016/ta/c6ta01348a

Fihri, A., Cha, D., Bouhrara, M., Almana, N. & Polshettiwar, V. ChemSusChem 5, 85–89 (2012): https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201100379

Maity, A. & Polshettiwar, V. ChemSusChem 10, 3866−3913 (2017): https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201701076

Polshettiwar, V., Cha, D., Zhang, X. & Basset J. M. Angew. Chem. Int. Ed. 49, 9652−9656 (2010): https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201003451

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maity, A., Belgamwar, R. & Polshettiwar, V. Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture. Nat Protoc 14, 2177–2204 (2019). https://doi.org/10.1038/s41596-019-0177-z

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing