Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Wireless nanopore electrodes for analysis of single entities

Abstract

Measurements of a single entity underpin knowledge of the heterogeneity and stochastics in the behavior of molecules, nanoparticles, and cells. Electrochemistry provides a direct and fast method to analyze single entities as it probes electron/charge-transfer processes. However, a highly reproducible electrochemical-sensing nanointerface is often hard to fabricate because of a lack of control of the fabrication processes at the nanoscale. In comparison with conventional micro/nanoelectrodes with a metal wire inside, we present a general and easily implemented protocol that describes how to fabricate and use a wireless nanopore electrode (WNE). Nanoscale metal deposition occurs at the tip of the nanopipette, providing an electroactive sensing interface. The WNEs utilize a dynamic ionic flow instead of a metal wire to sense the interfacial redox process. WNEs provide a highly controllable interface with a 30- to 200-nm diameter. This protocol presents the construction and characterization of two types of WNEs—the open-type WNE and closed-type WNE—which can be used to achieve reproducible electrochemical measurements of single entities. Combined with the related signal amplification mechanisms, we also describe how WNEs can be used to detect single redox molecules/ions, analyze the metabolism of single cells, and discriminate single nanoparticles in a mixture. This protocol is broadly applicable to studies of living cells, nanomaterials, and sensors at the single-entity level. The total time required to complete the protocol is ~10–18 h. Each WNE costs ~$1–$3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the concept of the WNE and its applications.
Fig. 2: Fabrication procedure and characterization of the closed-type and open-type WNEs.
Fig. 3: Schematic of the adapted setup for WNE experiments.
Fig. 4: Electrical and optical monitoring of the closed-type WNE fabrication process.
Fig. 5: Detection of Hg2+ at different concentrations using open-type WNEs.
Fig. 6: Electrical monitoring of the redox target in living cells using WNE.
Fig. 7: Electrical recording of single-nanoparticle collision with closed-type WNEs.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Gooding, J. J. Single entity electrochemistry progresses to cell counting. Angew. Chem. Int. Ed. 55, 12956–12958 (2016).

    Article  CAS  Google Scholar 

  2. Crooks, R. M. Concluding remarks: single entity electrochemistry one step at a time. Faraday Discuss. 193, 533–547 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Y., Shan, X. & Tao, N. Emerging tools for studying single entity electrochemistry. Faraday Discuss. 193, 9–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Fan, F. R. & Bard, A. J. Electrochemical detection of single molecules. Science 267, 871–874 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Ying, Y. L., Ding, Z. F., Zhan, D. P. & Long, Y. T. Advanced electroanalytical chemistry at nanoelectrodes. Chem. Sci 8, 3338–3348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quinn, B. M., Van ‘t Hof, P. G. & Lemay, S. G. Time-resolved electrochemical detection of discrete adsorption events. J. Am. Chem. Soc. 126, 8360–8361 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Xiao, X. & Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 129, 9610–9612 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Schulte, A. & Schuhmann, W. Single-cell microelectrochemistry. Angew. Chem. Int. Ed. 46, 8760–8777 (2007).

    Article  CAS  Google Scholar 

  9. Zhang, B., Zhang, Y. & White, H. S. The nanopore electrode. Anal. Chem. 76, 6229–6238 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Oja, S. M., Wood, M. & Zhang, B. Nanoscale electrochemistry. Anal. Chem. 85, 473–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Xiao, X., Fan, F. R., Zhou, J. & Bard, A. J. Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 130, 16669–16677 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Ma, W. et al. Tracking motion trajectories of individual nanoparticles using time-resolved current traces. Chem. Sci. 8, 1854–1861 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Ustarroz, J., Kang, M., Bullions, E. & Unwin, P. R. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events. Chem. Sci 8, 1841–1853 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Oja, S. M. et al. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles. J. Am. Chem. Soc. 139, 708–718 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, X. S. et al. Transient electrochemistry: beyond simply temporal resolution. Chem. Commun. 52, 251–263 (2016).

    Article  CAS  Google Scholar 

  16. Stuart, E. J., Rees, N. V., Cullen, J. T. & Compton, R. G. Direct electrochemical detection and sizing of silver nanoparticles in seawater media. Nanoscale 5, 174–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Peng, Y. Y., Qian, R. C., Hafez, M. E. & Long, Y. T. Stochastic collision nanoelectrochemistry: a review of recent developments. ChemElectroChem 4, 977–985 (2017).

    Article  CAS  Google Scholar 

  18. Mirkin, M. V., Sun, T., Yu, Y. & Zhou, M. Electrochemistry at one nanoparticle. Acc. Chem. Res. 49, 2328–2335 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Sekretaryova, A. N., Vagin, M. Y., Turner, A. P. & Eriksson, M. Electrocatalytic currents from single enzyme molecules. J. Am. Chem. Soc. 138, 2504–2507 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Bard, A. J. Toward single enzyme molecule electrochemistry. ACS Nano 2, 2437–2440 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Han, L. et al. Single molecular catalysis of a redox enzyme on nanoelectrodes. Faraday Discuss. 193, 133–139 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Dick, J. E., Renault, C. & Bard, A. J. Observation of single-protein and DNA macromolecule collisions on ultramicroelectrodes. J. Am. Chem. Soc. 137, 8376–8379 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Hoeben, F. J. M. et al. Toward single-enzyme molecule electrochemistry:[NiFe]-hydrogenase protein film voltammetry at nanoelectrodes. ACS Nano 2, 2497–2504 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Dick, J. E., Hilterbrand, A. T., Strawsine, L. M., Upton, J. W. & Bard, A. J. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses. Proc. Natl. Acad. Sci. USA 113, 6403–6408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dunevall, J. et al. Characterizing the catecholamine content of single mammalian vesicles by collision–adsorption events at an electrode. J. Am. Chem. Soc. 137, 4344–4346 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Li, X., Majdi, S., Dunevall, J., Fathali, H. & Ewing, A. G. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew. Chem. Int. Ed. 54, 11978–11982 (2015).

    Article  CAS  Google Scholar 

  27. Pan, R., Xu, M., Burgess, J. D., Jiang, D. & Chen, H.-Y. Direct electrochemical observation of glucosidase activity in isolated single lysosomes from a living cell. Proc. Natl. Acad. Sci. USA 115, 4087–4092 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ying, Y. L. et al. Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. J. Am. Chem. Soc. 140, 5385–5392 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Li, Y.-T. et al. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew. Chem. Int. Ed. 53, 12456–12460 (2014).

    CAS  Google Scholar 

  30. Actis, P. et al. Electrochemical nanoprobes for single-cell analysis. ACS Nano 8, 875–884 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Katemann, B. B. & Schuhmann, W. Fabrication and characterization of needle-type. Electroanalysis 14, 22–28 (2002).

    Article  CAS  Google Scholar 

  32. Nioradze, N. et al. Origins of nanoscale damage to glass-sealed platinum electrodes with submicrometer and nanometer size. Anal. Chem. 85, 6198–6202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, L. J., Qian, R. C., Ma, W., Tian, H. & Long, Y. T. Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision. Anal. Chem. 88, 8375–8379 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Shao, Y. et al. Nanometer-sized electrochemical sensors. Anal. Chem. 69, 1627–1634 (1997).

    Article  CAS  Google Scholar 

  35. Sun, P., Zhang, Z., Guo, J. & Shao, Y. Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy. Anal. Chem. 73, 5346–5351 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, B. et al. Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal. Chem. 79, 4778–4787 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, X. et al. Fabrication of metal nanoelectrodes by interfacial reactions. Anal. Chem. 86, 7001–7008 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Ma, C., Zaino Iii, L. P. & Bohn, P. W. Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes. Chem. Sci. 6, 3173–3179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, S., Li, M., Su, B. & Shao, Y. Fabrication and use of nanopipettes in chemical analysis. Annu. Rev. Anal. Chem. 11, 265–286 (2018).

    Article  Google Scholar 

  40. Fang, F., He, Y.-Q., Tian, L., Li, Y.-Y. & Wu, Z.-Y. Making of a single solid-state nanopore on the wall of fused silica capillary. R. Soc. Open Sci 5, 171633 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hu, K. K. et al. Open carbon nanopipettes as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. Anal. Chem. 86, 8897–8901 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Singhal, R. et al. Small diameter carbon nanopipettes. Nanotechnology 21, 015304 (2009).

    Article  PubMed  Google Scholar 

  43. He, H., Xu, X. & Jin, Y. Wet-chemical enzymatic preparation and characterization of ultrathin gold-decorated single glass nanopore. Anal. Chem. 86, 4815–4821 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, X., He, H. & Jin, Y. Facile one-step photochemical fabrication and characterization of an ultrathin gold-decorated single glass nanopipette. Anal. Chem. 87, 3216–3221 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Stefureac, R., Long, Y.-t, Kraatz, H.-B., Howard, P. & Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 45, 9172–9179 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Cao, C. et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat. Nanotechnol. 11, 713–718 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Piguet, F. et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Laszlo, A. H., Derrington, I. M. & Gundlach, J. H. MspA nanopore as a single-molecule tool: from sequencing to SPRNT. Methods 105, 75–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karhanek, M., Kemp, J. T., Pourmand, N., Davis, R. W. & Webb, C. D. Single DNA molecule detection using nanopipettes and nanoparticles. Nano Lett. 5, 403–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Ding, S., Gao, C. & Gu, L. Q. Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal. Chem. 81, 6649–6655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, C., Ding, S., Tan, Q. & Gu, L.-Q. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. Anal. Chem. 81, 80–86 (2008).

    Article  Google Scholar 

  54. Li, W. et al. Single protein molecule detection by glass nanopores. ACS Nano 7, 4129–4134 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zweifel, L. P., Shorubalko, I. & Lim, R. Y. Helium scanning transmission ion microscopy and electrical characterization of glass nanocapillaries with reproducible tip geometries. ACS Nano 10, 1918–1925 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Shi, W., Friedman, A. K. & Baker, L. A. Nanopore sensing. Anal. Chem. 89, 157–188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Freedman, K. J. et al. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat. Commun. 7, 10217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Macazo, F. C. & White, R. J. Bioinspired protein channel-based scanning ion conductance microscopy (Bio-SICM) for simultaneous conductance and specific molecular imaging. J. Am. Chem. Soc. 138, 2793–2801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ren, R. et al. Nanopore extended field-effect transistor for selective single-molecule biosensing. Nat. Commun. 8, 586 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bell, N. A. W., Chen, K., Ghosal, S., Ricci, M. & Keyser, U. F. Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat. Commun. 8, 380 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Hall, A. R. et al. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol. 5, 874–877 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Venkatesan, B. M. et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano 6, 441–450 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rutkowska, A. et al. Electrodeposition and bipolar effects in metallized nanopores and their use in the detection of insulin. Anal. Chem. 87, 2337–2344 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, L., Yang, C., Zhao, K., Li, J. Y. & Wu, H. C. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4, 2989 (2013).

    Article  PubMed  Google Scholar 

  66. Geng, J. et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Bacri, L. et al. Biomimetic ion channels formation by emulsion based on chemically modified cyclodextrin nanotubes. Faraday Discuss. 210, 41–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Bodrenko, I. V., Wang, J., Salis, S., Winterhalter, M. & Ceccarelli, M. Sensing single molecule penetration into nanopores: pushing the time resolution to the diffusion limit. ACS Sens. 2, 1184–1190 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Gu, L.-Q. & Shim, J. W. Single molecule sensing by nanopores and nanopore devices. Analyst 135, 441–451 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Ying, Y. L., Zhang, J., Gao, R. & Long, Y. T. Nanopore-based sequencing and detection of nucleic acids. Angew. Chem. Int. Ed. 52, 13154–13161 (2013).

    Article  CAS  Google Scholar 

  71. Gao, R., Ying, Y. L., Hu, Y. X., Li, Y. J. & Long, Y. T. Wireless bipolar nanopore electrode for single small molecule detection. Anal. Chem. 89, 7382–7387 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Gao, R. et al. Dynamic self-assembly of homogenous microcyclic structures controlled by a silver-coated nanopore. Small 13, 1700234 (2017).

    Article  Google Scholar 

  73. Gao, R. et al. A 30 nm nanopore electrode: facile fabrication and direct insights into the intrinsic feature of single nanoparticle collisions. Angew. Chem. Int. Ed. 57, 1011–1015 (2018).

    Article  CAS  Google Scholar 

  74. Ying, Y. L., Gao, R., Hu, Y.-X. & Long, Y.-T. Electrochemical confinement effects for innovating new nanopore sensing mechanisms. Small Methods 2, 1700390 (2018).

    Article  Google Scholar 

  75. Bouffier, L., Sojic, N. & Kuhn, A. Capillary-assisted bipolar electrochemistry: a focused minireview. Electrophoresis 38, 2687–2694 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Crooks, R. M. Principles of bipolar electrochemistry. ChemElectroChem 3, 357–359 (2016).

    Article  CAS  Google Scholar 

  77. Fosdick, S. E., Knust, K. N., Scida, K. & Crooks, R. M. Bipolar electrochemistry. Angew. Chem. Int. Ed. 52, 10438–10456 (2013).

    Article  CAS  Google Scholar 

  78. Loget, G., Zigah, D., Bouffier, L., Sojic, N. & Kuhn, A. Bipolar electrochemistry: from materials science to motion and beyond. Acc. Chem. Res. 46, 2513–2523 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Grabar, K. C., Freeman, R. G., Hommer, M. B. & Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735–743 (1995).

    Article  CAS  Google Scholar 

  80. Link, S. & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21834001 and 61871183), the Innovation Program of the Shanghai Municipal Education Commission (2017-01-07-00-02-E00023), the National Ten Thousand Talent Program for young top-notch talent, and the Shanghai Rising-Star Program (19QA1402300).

Author information

Authors and Affiliations

Authors

Contributions

R.G., Y.-L.Y., and Y.-T.L. conceived and designed the research; R.G., Y.L., Y.-X.H., S.-W.X., L.-Q.R., R.-J.Y, Y.-J.L., and L.-F.C. performed the WNE fabrication and characterization experiments; R.G. and Y.-X.H. implemented the applications by using WNEs and analyzed the data; Y.-X.H. and H.-W.L. cultured the cells. R.G., Y.L., Y.-X.H., Y.-L.Y., and Y.-T.L. organized and summarized the figures; R.G., Y.L., Y.-L.Y., and Y.-T.L. wrote the manuscript. All authors were involved in the discussions of the manuscript at all stages.

Corresponding author

Correspondence to Yi-Lun Ying.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ying, Y.-L. et al. J. Am. Chem. Soc. 140, 5385–5392 (2018): https://pubs.acs.org/doi/abs/10.1021/jacs.7b12106

Gao, R. et al. Angew. Chem. Int. Ed. 57, 1011–1015 (2018): https://onlinelibrary.wiley.com/doi/10.1002/anie.201710201

Key data used in this protocol

Gao, R., Ying, Y.-L., Hu, Y.-X., Li, Y.-J. & Long, Y.-T. Anal. Chem. 89, 7382–7387 (2017): https://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b00729

Ying, Y.-L. et al. J. Am. Chem. Soc. 140, 5385–5392 (2018): https://pubs.acs.org/doi/abs/10.1021/jacs.7b12106

Gao, R. et al. Angew. Chem. Int. Ed. 57, 1011–1015 (2018): https://onlinelibrary.wiley.com/doi/10.1002/anie.201710201

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Lin, Y., Ying, YL. et al. Wireless nanopore electrodes for analysis of single entities. Nat Protoc 14, 2015–2035 (2019). https://doi.org/10.1038/s41596-019-0171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0171-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing