Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice

Abstract

Fate mapping is a powerful genetic tool for linking stem or progenitor cells with their progeny, and hence for defining cell lineages in vivo. The resolution of fate mapping depends on the numbers of distinct markers that are introduced in the beginning into stem or progenitor cells; ideally, numbers should be sufficiently large to allow the tracing of output from individual cells. Highly diverse genetic barcodes can serve this purpose. We recently developed an endogenous genetic barcoding system, termed Polylox. In Polylox, random DNA recombination can be induced by transient activity of Cre recombinase in a 2.1-kb-long artificial recombination substrate that has been introduced into a defined locus in mice (Rosa26Polylox reporter mice). Here, we provide a step-by-step protocol for the use of Polylox, including barcode induction and estimation of induction efficiency, barcode retrieval with single-molecule real-time (SMRT) DNA sequencing followed by computational barcode identification, and the calculation of barcode-generation probabilities, which is key for estimations of single-cell labeling for a given number of stem cells. Thus, Polylox barcoding enables high-resolution fate mapping in essentially all tissues in mice for which inducible Cre driver lines are available. Alternative methods include ex vivo cell barcoding, inducible transposon insertion and CRISPR–Cas9-based barcoding; Polylox currently allows combining non-invasive and cell-type-specific labeling with high label diversity. The execution time of this protocol is ~2–3 weeks for experimental data generation and typically <2 d for computational Polylox decoding and downstream analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the Polylox cassette.
Fig. 2: Detection of barcode induction efficiency with Polylox-locus-specific PCR.
Fig. 3: Barcode frequencies in sample repeats.
Fig. 4: Analysis steps of the RPBPBR computational pipeline.
Fig. 5: Selection of thresholds for unique barcodes.

Similar content being viewed by others

Code availability

All computational codes and scripts used in this protocol have been deposited in GitHub: https://github.com/hoefer-lab/RPBPBR and https://github.com/hoefer-lab/polylox. The version used for writing this protocol can be found in the Supplementary Software.

References

  1. Snippert, H. J. & Clevers, H. Tracking adult stem cells. EMBO Rep. 12, 113–122 (2011).

    Article  CAS  Google Scholar 

  2. Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33–45 (2012).

    Article  CAS  Google Scholar 

  3. Woodworth, M. B., Girskis, K. M. & Walsh, C. A. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230–244 (2017).

    Article  CAS  Google Scholar 

  4. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

    Article  CAS  Google Scholar 

  5. Sternberg, N. & Hamilton, D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486 (1981).

    Article  CAS  Google Scholar 

  6. Abremski, K., Hoess, R. & Sternberg, N. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32, 1301–1311 (1983).

    Article  CAS  Google Scholar 

  7. Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018).

    Article  CAS  Google Scholar 

  8. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  Google Scholar 

  9. McKenna, A. et al. Whole organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).

    Article  Google Scholar 

  10. Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J. & van Oudenaarden, A. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108–112 (2018).

    Article  CAS  Google Scholar 

  11. Kalhor, R. et al. Developmental barcoding of whole mouse via homing CRISPR. Science 361, eaat9804 (2018).

    Article  Google Scholar 

  12. Spanjaard, B. & Junker, J. P. Methods for lineage tracing on the organism-wide level. Curr. Opin. Cell Biol. 49, 16–21 (2017).

    Article  CAS  Google Scholar 

  13. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    Article  CAS  Google Scholar 

  14. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    Article  CAS  Google Scholar 

  15. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    Article  CAS  Google Scholar 

  16. Behjati, S. et al. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513, 422–425 (2014).

    Article  CAS  Google Scholar 

  17. Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).

    Article  CAS  Google Scholar 

  18. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  Google Scholar 

  19. Weber, T. S. et al. Site-specific recombinatorics: in situ cellular barcoding with the Cre Lox system. BMC Syst. Biol. 10, 43 (2016).

    Article  Google Scholar 

  20. Peikon, I. D., Gizatullina, D. I. & Zador, A. M. In vivo generation of DNA sequence diversity for cellular barcoding. Nucleic Acids Res. 42, e127 (2014).

    Article  Google Scholar 

  21. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  Google Scholar 

  22. Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289 (2015).

    Article  Google Scholar 

  23. Golde, W. T., Gollobin, P. & Rodriguez, L. L. A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim. 34, 39–43 (2005).

    Article  Google Scholar 

  24. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual. 3rd edn (Cold Spring Harbor Laboratory Press, 2001).

  25. Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    Article  CAS  Google Scholar 

  26. Perie, L. et al. Determining lineage pathways from cellular barcoding experiments. Cell Rep. 6, 617–624 (2014).

    Article  CAS  Google Scholar 

  27. Flossdorf, M., Rossler, J., Buchholz, V. R., Busch, D. H. & Hofer, T. CD8(+) T cell diversification by asymmetric cell division. Nat. Immunol. 16, 891–893 (2015).

    Article  CAS  Google Scholar 

  28. Cho, Y. L. et al. TCR signal quality modulates fate decisions of single CD4(+) T cells in a probabilistic manner. Cell Rep. 20, 806–818 (2017).

    Article  CAS  Google Scholar 

  29. Xu, J. et al. Statistical inference in partially observed branching processes with application to cell lineage tracking of in vivo hematopoiesis. Preprint at https://arxiv.org/abs/1610.07550v2 (2018).

Download references

Acknowledgements

We thank C. Quedenau for invaluable help. T.H. is supported by CellNetworks, DKFZ core funding, e:Bio BMBF project FKZ 0316182B (SB-Epo), EU-FP7 ITN QuantI (317040), H2020-MSCA-ITN-2017 grant agreement 764698 and SFB 873-B11; H.-R.R. is supported by ERC Advanced Grant 742883, H2020-MSCA-ITN-2017 grant agreement 764698, SFB 873-B11 and DKFZ core funding.

Author information

Authors and Affiliations

Authors

Contributions

W.P., X.W., J.R. and T.B.F. contributed to the practical protocol. T.B.F., X.W., T.H. and H.-R.R. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Thorsten B. Feyerabend, Thomas Höfer or Hans-Reimer Rodewald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Protocols thanks Pavel Osten and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key reference using this protocol

Pei, W. et al. Nature 548, 456–460 (2017): https://doi.org/10.1038/nature23653

Supplementary information

Supplementary Software

The computational codes and scripts used in writing this protocol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, W., Wang, X., Rössler, J. et al. Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice. Nat Protoc 14, 1820–1840 (2019). https://doi.org/10.1038/s41596-019-0163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0163-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics