Abstract
Among the different developed solid-state nanopores, nanopores constructed in a monolayer of molybdenum disulfide (MoS2) stand out as powerful devices for single-molecule analysis or osmotic power generation. Because the ionic current through a nanopore is inversely proportional to the thickness of the pore, ultrathin membranes have the advantage of providing relatively high ionic currents at very small pore sizes. This increases the signal generated during translocation of biomolecules and improves the nanopores’ efficiency when used for desalination or reverse electrodialysis applications. The atomic thickness of MoS2 nanopores approaches the inter-base distance of DNA, creating a potential candidate for DNA sequencing. In terms of geometry, MoS2 nanopores have a well-defined vertical profile due to their atomic thickness, which eliminates any unwanted effects associated with uneven pore profiles observed in other materials. This protocol details all the necessary procedures for the fabrication of solid-state devices. We discuss different methods for transfer of monolayer MoS2, different approaches for the creation of nanopores, their applicability in detecting DNA translocations and the analysis of translocation data through open-source programming packages. We present anticipated results through the application of our nanopores in DNA translocations and osmotic power generation. The procedure comprises four parts: fabrication of devices (2–3 d), transfer of MoS2 and cleaning procedure (24 h), the creation of nanopores within MoS2 (30 min) and performing DNA translocations (2–3 h). We anticipate that our protocol will enable large-scale manufacturing of single-molecule-analysis devices as well as next-generation DNA sequencing.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing
npj 2D Materials and Applications Open Access 23 February 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

















Code availability
All the code used to produce the figures, as well as the analysis of the raw data used in this protocol, is available publicly on Zenodo: https://doi.org/10.5281/zenodo.1463768.
Data availability
All the raw data used in this protocol are available publicly on Zenodo: https://doi.org/10.5281/zenodo.1463768.
References
Coulter, W. H. Means for counting particles suspended in a fluid. 1953. US patent 2,656,508 (1953).
Graham, M. D. The Coulter Principle: foundation of an industry. J. Assoc. Lab. Autom. 8, 72–81 (2003).
Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).
Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).
Laszlo, A. H. et al. Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol. 32, 829–833 (2014).
Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).
Yanagi, I., Ishida, T., Fujisaki, K. & Takeda, K. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Sci. Rep. 5, 14656 (2015).
Kwok, H., Briggs, K. & Tabard Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS ONE 9, e92880 (2014).
van den Hout, M. et al. Controlling nanopore size, shape and stability. Nanotechnology 21, 115304 (2010).
Gilboa, T., Zrehen, A., Girsault, A. & Meller, A. Optically-monitored nanopore fabrication using a focused laser beam. Sci. Rep. 8, 9765 (2018).
Yuan, Y. et al. Sub-20 nm nanopores sculptured by a single nanosecond laser pulse. Preprint at http://arxiv.org/abs/1806.08172 (2018).
Skinner, G. M., van den Hout, M., Broekmans, O., Dekker, C. & Dekker, N. H. Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. Nano Lett. 9, 2953–2960 (2009).
Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA 97, 1079–1084 (2000).
Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 051903 (2005).
Plesa, C. et al. Direct observation of DNA knots using a solid-state nanopore. Nat. Nanotechnol. 11, 1093–1097 (2016).
Plesa, C. et al. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013).
Talaga, D. S. & Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).
Li, J., Fologea, D., Rollings, R. & Ledden, B. Characterization of protein unfolding with solid-state nanopores. Protein. Pept. Lett. 21, 256–265 (2014).
Si, W. & Aksimentiev, A. Nanopore sensing of protein folding. ACS Nano 11, 7091–7100 (2017).
Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).
Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).
Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).
Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).
Hall, J. E. Access resistance of a small circular pore. J. Gen. Physiol. 66, 531–532 (1975).
Farimani, A. B., Min, K. & Aluru, N. R. DNA base detection using a single-layer MoS2. ACS Nano 8, 7914–7922 (2014).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for dna translocation. ACS Nano 8, 2504–2511 (2014).
Feng, J. et al. Identification of single nucleotides in MoS 2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).
Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).
Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).
Graf, M., Liu, K., Sarathy, A., Leburton, J.-P. & Radenovic, A. Transverse detection of DNA in a MoS2 nanopore. Biophys. J. 114, 180A (2018).
Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).
Danda, G. et al. Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano 11, 1937–1945 (2017).
Liu, K. et al. Geometrical effect in 2D nanopores. Nano Lett. 17, 4223–4230 (2017).
Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).
Lin, Y.-C. et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637 (2012).
Lee, Y. H. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013).
Wang, X., Feng, H., Wu, Y. & Jiao, L. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013).
Gurarslan, A. et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).
Li, H. et al. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 8, 6563–6570 (2014).
Yu, H. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11, 12001–12007 (2017).
Shinde, S. M. et al. Surface-functionalization-mediated direct transfer of molybdenum disulfide for large-area flexible devices. Adv. Funct. Mater. 28, 1–11 (2018).
Schneider, G. F., Calado, V. E., Zandbergen, H., Vandersypen, L. M. K. & Dekker, C. Wedging transfer of nanostructures. Nano Lett. 10, 1912–1916 (2010).
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
Zrehen, A., Gilboa, T. & Meller, A. Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown. Nanoscale 9, 16437–16445 (2017).
Drndić, M. Sequencing with graphene pores. Nat. Nanotechnol. 9, 743–743 (2014).
Carson, S. & Wanunu, M. Challenges in DNA motion control and sequence readout using nanopore devices. Nanotechnology 26, 074004 (2015).
Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).
Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).
Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).
Benameur, M. M. et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).
Tabard-Cossa, V., Trivedi, D., Wiggin, M., Jetha, N. N. & Marziali, A. Noise analysis and reduction in solid-state nanopores. Nanotechnology 18, 305505 (2007).
Wen, C. et al. Generalized noise study of solid-state nanopores at low frequencies. ACS Sens. 2, 300–307 (2017).
Smeets, R. M. M., Keyser, U. F., Dekker, N. H. & Dekker, C. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA 105, 417–421 (2008).
Hoogerheide, D. P., Garaj, S. & Golovchenko, J. A. Probing surface charge fluctuations with solid-state nanopores. Phys. Rev. Lett. 102, 256804 (2009).
Smeets, R. M. M., Keyser, U. F., Wu, M. Y., Dekker, N. H. & Dekker, C. Nanobubbles in solid-state nanopores. Phys. Rev. Lett. 97, 088101 (2006).
Garaj, S., Liu, S., Golovchenko, J. A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. USA 110, 12192–12196 (2013).
Arjmandi-Tash, H., Belyaeva, L. A. & Schneider, G. F. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond. Chem. Soc. Rev. 45, 476–493 (2016).
Uram, J. D., Ke, K. & Mayer, M. L. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano 2, 857–872 (2008).
Balan, A. et al. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths. Nano Lett. 14, 7215–7220 (2014).
Balan, A., Chien, C. C., Engelke, R. & Drndic, M. Suspended solid-state membranes on glass chips with sub 1-pF capacitance for biomolecule sensing applications. Sci. Rep. 5, 17775 (2015).
Waggoner, P. S., Kuan, A. T., Polonsky, S., Peng, H. & Rossnagel, S. M. Increasing the speed of solid-state nanopores. J. Vac. Sci. Technol. B 29, 032206 (2011).
Matsui, K. et al. Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes. Jpn. J. Appl. Phys. 57, 046702 (2018).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005).
Dumcenco, D. et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).
Li, J. & Östling, M. Scalable fabrication of 2D semiconducting crystals for future electronics. Electronics 4, 1033–1061 (2015).
Kim, H., Ovchinnikov, D., Deiana, D., Unuchek, D. & Kis, A. Suppressing nucleation in metalorganic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 17, 5056–5063 (2017).
Waduge, P. et al. Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano 9, 7352–7359 (2015).
Ma, X. et al. Capillary-force-assisted clean-stamp transfer of two-dimensional materials. Nano Lett. 17, 6961–6967 (2017).
Garcia, A. et al. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy 146, 33–38 (2014).
Park, H. J., Ryu, G. H. & Lee, Z. Hole defects on two-dimensional materials formed by electron beam irradiation: toward nanopore devices. Appl. Microsc. 45, 107–114 (2015).
Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 1–8 (2015).
Kuan, A. T., Lu, B., Xie, P., Szalay, T. & Golovchenko, J. A. Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl. Phys. Lett. 106, 203109 (2015).
Kowalczyk, S. W., Grosberg, A. Y., Rabin, Y. & Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011).
Sahu, S. & Zwolak, M. Maxwell-Hall access resistance in graphene nanopores. Phys. Chem. Chem. Phys. 20, 4646–4651 (2018).
Carlsen, A. T., Zahid, O. K., Ruzicka, J., Taylor, E. W. & Hall, A. R. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. ACS Nano 8, 4754–4760 (2014).
Gadaleta, A. et al. Sub-additive ionic transport across arrays of solid-state nanopores. Phys. Fluids 26, 012005 (2014).
Moody, G. J., . & Oke, R. B. & Thomas, J. D. R. The influence of light on silver–silver chloride electrodes. Analyst 94, 803–804 (1969).
Raillon, C., Granjon, P., Graf, M., Steinbock, L. J. & Radenovic, A. Fast and automatic processing of multi-level events in nanopore translocation experiments. Nanoscale 4, 4916–4924 (2012).
Goyal, G., Lee, Y. B., Darvish, A., Ahn, C. W. & Kim, M. J. Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology 27, 1495301 (2016).
Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5, 160–165 (2010).
York, D., Evensen, N. M., Martı́nez, M. L. & De Basabe Delgado, J. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 72, 367–375 (2004).
Forstater, J. H. et al. MOSAIC: a modular single-molecule analysis interface for decoding multistate nanopore data. Anal. Chem. 88, 11900–11907 (2016).
Plesa, C. & Dekker, C. Data analysis methods for solid-state nanopores. Nanotechnology 26, 084003 (2015).
Gu, Z., Ying, Y.-L., Cao, C., He, P. & Long, Y.-T. Accurate data process for nanopore analysis. Anal. Chem. 87, 907–913 (2015).
Acknowledgements
This work was financially supported by a Swiss National Science Foundation (SNSF) Consolidator grant (BIONIC BSCGI0_157802), by a CCMX project (‘Large Area Growth of 2D Materials for device integration’) and also by a sponsored research agreement from Hoffmann-LaRoche. We thank M. Macha (EPFL), D. Dumcenco (EPFL), H. Cun (EPFL), Y. Zhao (EPFL) and M. Fadlelmula (EPFL) for providing MoS2 material. We thank A. Kis (EPFL) for discussions on improving transfer methods. Device fabrication was partially carried out at the Center for Micro/Nanotechnology (CMi) at EPFL and at the National Institute of Standards and Technology (NIST) Center of Nanoscale Science and Technology (CNST). We thank the Centre Interdisciplinaire de Microscopie Electronique (CIME) at EPFL for access to electron microscopes. V.G. acknowledges support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, award 70NANB14H209, through the University of Maryland. This article identifies certain commercial equipment, instruments and materials to specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment, instruments and materials identified are necessarily the best available for the purpose. The authors thank J. Gundlach (University of Washington) for constructive comments on the manuscript.
Author information
Authors and Affiliations
Contributions
K.L. and J.F. performed the initial work on device fabrication, MoS2 transfer and pore characterization. M.G., J.T., V.G. and B.R.I. developed the substrate fabrication process; V.G. fabricated the substrates. Y.A. supervised the substrate fabrication process. J.F., K.L. and A.R. developed the electrochemical reaction pore-drilling method; M.G. built the transfer microscope setup; M.G. and M.L. developed the PMMA transfer method and optimized the MoS2 cleaning procedure; M.T. developed the PDMS transfer method; M.L. and M.G. performed TEM characterization; M.L. and K.L. optimized the TEM pore-drilling method; and M.G. developed the translocation data acquisition and analysis software. M.G., M.L. and M.T. fabricated the devices and performed the experiments. M.G., M.L., M.T., J.T. and A.R. wrote the manuscript. All authors provided constructive comments on the manuscript. The work was performed under the supervision of A.R.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Key references using this protocol
Liu, K., Feng, J., Kis, A. & Radenovic, A. ACS Nano 8, 2504–2511 (2014): https://doi.org/10.1021/nn406102h
Feng, J. et al. Nano Lett. 15, 3431–3438 (2015): https://doi.org/10.1021/acs.nanolett.5b00768
Feng, J. et al. Nat. Nanotechnol. 10, 1070–1076 (2015): https://doi.org/10.1038/nnano.2015.219
Feng, J. et al. Nature 536, 197–200 (2016): https://doi.org/10.1038/nature18593
Supplementary information
Supplementary Video 1
PMMA-assisted selective transfer of MoS2 to a SiNx membrane.
Supplementary Video 2
PDMS-assisted selective transfer of MoS2 to a SiNx membrane.
Supplementary Video 3
Preparation of an elastomer mix and precision painting of a SiNx membrane.
Supplementary Video 4
Procedure for chip mounting, and wetting and handling of the flow cell.
Supplementary Data 1
3D file for TEM holder.
Supplementary Data 2
3D file for flow cell.
Supplementary Data 3
CAD file for photolithography and e-beam lithography.
Supplementary Data 4
3D file for chip holder.
Rights and permissions
About this article
Cite this article
Graf, M., Lihter, M., Thakur, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat Protoc 14, 1130–1168 (2019). https://doi.org/10.1038/s41596-019-0131-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41596-019-0131-0
This article is cited by
-
High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing
npj 2D Materials and Applications (2023)
-
Advancing osmotic power generation by covalent organic framework monolayer
Nature Nanotechnology (2022)
-
DNA sequencing: an overview of solid-state and biological nanopore-based methods
Biophysical Reviews (2022)
-
Nanofluidics for osmotic energy conversion
Nature Reviews Materials (2021)
-
Solid-state nanopore sensors
Nature Reviews Materials (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.