Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Nanoscale fiber-optic force sensors for mechanical probing at the molecular and cellular level

Abstract

There is an ongoing need to develop ultrasensitive nanomechanical instrumentation that has high spatial and force resolution, as well as an ability to operate in various biological environments. Here, we present a compact nanofiber optic force transducer (NOFT) with sub-piconewton force sensitivity and a nanoscale footprint that paves the way to the probing of complex mechanical phenomena inside biomolecular systems. The NOFT platform comprises a SnO2 nanofiber optic equipped with a thin, compressible polymer cladding layer studded with plasmonic nanoparticles (NPs). This combination allows angstrom-level movements of the NPs to be quantified by tracking the optical scattering of the NPs as they interact with the near-field of the fiber. The distance-dependent optical signals can be converted to force once the mechanical properties of the compressible cladding are fully characterized. In this protocol, the details of the synthesis, characterization, and calibration of the NOFT system are described. The overall protocol, from the synthesis of the nanofiber optic devices to acquisition of nanomechanical data, takes ~72 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NOFT system overview.
Fig. 2: NOFT operation for detecting nanomechanical signals.
Fig. 3: Near-field scattering and attachment of gold nanoparticles.
Fig. 4: Structural and mechanical properties of the PEG cladding.
Fig. 5: NOFT system force response and calibration.
Fig. 6
Fig. 7
Fig. 8: Experimental setup for transferring nanofibers.
Fig. 9: Procedure for PEG coating and particle attachment.
Fig. 10: Scattering from gold NPs.
Fig. 11: Far-field imaging and data acquisition with the NOFT system.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zlatanova, J., Lindsay, S. M. & Leuba, S. H. Single molecule force spectroscopy in biology using the atomic force microscope. Prog. Biophys. Mol. Biol. 74, 37–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Perkins, T. T. Optical traps for single molecule biophysics: a primer. Laser Photon. Rev. 3, 203–220 (2009).

    Article  CAS  Google Scholar 

  5. La Porta, A. & Wang, M. D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

    Article  PubMed  Google Scholar 

  6. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, Q. et al. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon-dielectric interactions. Nat. Photon. 11, 352–355 (2017).

    Article  CAS  Google Scholar 

  9. Yoon, I. et al. Nanofiber near-field light-matter interactions for enhanced detection of molecular level displacements and dynamics. Nano Lett. 13, 1440–1445 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Churnside, A. B. et al. Routine and timely sub-piconewton force stability and precision for biological applications of atomic force microscopy. Nano Lett. 12, 3557–3561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raman, A. et al. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat. Nanotech. 6, 809–814 (2011).

    Article  CAS  Google Scholar 

  12. Zensen, C., Villadsen, N., Winterer, F., Keiding, S. R. & Lohmuller, T. Pushing nanoparticles with light - a femtonewton resolved measurement of optical scattering forces. APL Photonics 1, 8 (2016).

    Article  Google Scholar 

  13. Marago, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nat. Nanotech. 8, 807–819 (2013).

    Article  CAS  Google Scholar 

  14. Ohlinger, A., Deak, A., Lutich, A.A. & Feldmann, J. Optically trapped gold nanoparticle enables listening at the microscale. Phys. Rev. Lett. 108, 018101 (2012).

  15. Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Evans, E., Ritchie, K. & Merkel, R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68, 2580–2587 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stabley, D. R., Jurchenko, C., Marshall, S. S. & Salaita, K. S. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9, 64–67 (2011).

    Article  PubMed  Google Scholar 

  18. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, Q.-Z. et al. A molecular force probe. Nat. Nanotech. 4, 302–306 (2009).

    Article  CAS  Google Scholar 

  20. Meng, F., Suchyna, T. M. & Sachs, F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275, 3072–3087 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. & Dunn, A. R. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985–3989 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Kemmerich, F. E. et al. Simultaneous single-molecule force and fluorescence sampling of DNA nanostructure conformations using magnetic tweezers. Nano Lett. 16, 381–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, S., Blainey, P. C., Schroeder, C. M. & Xie, X. S. Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA. Nat. Methods 4, 397–399 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Bianco, P. R. et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ghanbari, A. et al. A micropillar-based on-chip system for continuous force measurement of C-elegans. J. Micromech. Microeng. 22, 095009 (2012).

    Article  Google Scholar 

  27. Kirchner, S. R. et al. Direct optical monitoring of flow generated by bacterial flagellar rotation. Appl. Phys. Lett. 104, 093701 (2014).

    Article  Google Scholar 

  28. Reinhardt, M. et al. Fine-tuning the structure of stimuli-responsive polymer films by hydrostatic pressure and temperature. Macromolecules 46, 6541–6547 (2013).

    Article  CAS  Google Scholar 

  29. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  PubMed  Google Scholar 

  30. Zhai, L. Stimuli-responsive polymer films. Chem. Soc. Rev. 42, 7148–7160 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, Q., Yoon, I., Villanueva, J., Kim, K. & Sirbuly, D. J. Quantitative mechanical analysis of thin compressible polymer monolayers on oxide surfaces. Soft Matter 10, 8001–8010 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Burke, S. E. & Barrett, C. J. Swelling behavior of hyaluronic acid/polyallylamine hydrochloride multilayer films. Biomacromolecules 6, 1419–1428 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Sirbuly, D. J. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004).

    Article  PubMed  Google Scholar 

  34. Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X. L. Swimming efficiency of bacterium Escherichia coli. Proc. Natl. Acad. Sci. USA 103, 13712–13717 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Constantino, M.A., Jabbarzadeh, M., Fu, H.C. & Bansil, R. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci. Adv. 2, e1601661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shroff, S. G., Saner, D. R. & Lal, R. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic-force microscopy. Am. J. Physiol. 269, C286–C292 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, Z.W. et al. In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy. J. Biomed. Opt. 15, 037017 (2010).

    Article  PubMed  Google Scholar 

  38. Draga, R. O. P. et al. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal. Chem. 82, 5993–5999 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, Z. W. et al. Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. Opt. Lett. 34, 758–760 (2009).

    Article  PubMed  Google Scholar 

  40. Mehta, A. D., Jung, J. C., Flusberg, B. A. & Schnitzer, M. J. Fiber optic in vivo imaging in the mammalian nervous system. Curr. Opin. Neurobiol. 14, 617–628 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Utzinger, U. & Richards-Kortum, R. R. Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt. 8, 121–147 (2003).

    Article  PubMed  Google Scholar 

  42. Yan, R. et al. Nanowire-based single-cell endoscopy. Nat. Nanotech. 7, 191–196 (2012).

    Article  CAS  Google Scholar 

  43. Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yoon, I. et al. Stimulus-responsive light coupling and modulation with nanofiber waveguide junctions. Nano Lett. 12, 1905–1911 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Sirbuly, D. J. et al. Optical routing and sensing with nanowire assemblies. Proc. Natl. Acad. Sci. USA 102, 7800–7805 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Knight, M. W., Wu, Y. P., Lassiter, J. B., Nordlander, P. & Halas, N. J. Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett. 9, 2188–2192 (2009).

    Article  CAS  Google Scholar 

  47. Knoll, B. & Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182, 321–328 (2000).

    Article  CAS  Google Scholar 

  48. Yoon, I. et al. Profiling the evanescent field of nanofiber waveguides using self-assembled polymer coatings. Nanoscale 5, 552–555 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, Q. et al. Gap controlled plasmon-dielectric coupling effects investigated with single nanoparticle-terminated atomic force microscope probes. Nanoscale 8, 17102–17107 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, W. J., Neoh, K. G., Kang, E. T., Teo, S. L. M. & Rittschof, D. Polymer brush coatings for combating marine biofouling. Prog. Polym. Sci. 39, 1017–1042 (2014).

    Article  CAS  Google Scholar 

  51. Krishnan, S., Weinman, C. J. & Ober, C. K. Advances in polymers for anti-biofouling surfaces. J. Mater. Chem. 18, 3405–3413 (2008).

    Article  CAS  Google Scholar 

  52. Zhu, M. J., Lerum, M. Z. & Chen, W. How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir 28, 416–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942).

    Article  CAS  Google Scholar 

  54. Huggins, M. L. Some properties of solutions of long-chain compounds. J. Phys. Chem. 46, 151–158 (1942).

    Article  CAS  Google Scholar 

  55. Hristova, K. & Needham, D. The influence of polymer-grafted lipids on the physical-properties of lipid bilayers - a theoretical study. J. Colloid Interface Sci. 168, 302–314 (1994).

    Article  CAS  Google Scholar 

  56. Alexander, S. Adsorption of chain molecules with a polar head: a scaling description. J. Phys. France 38, 983–987 (1977).

    Article  CAS  Google Scholar 

  57. Degennes, P. G. Polymers at an interface - a simplified view. Adv. Colloid Interface Sci. 27, 189–209 (1987).

    Article  CAS  Google Scholar 

  58. Butt, H. J. et al. Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15, 2559–2565 (1999).

    Article  CAS  Google Scholar 

  59. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma, Y. G. et al. A local nanofiber-optic ear. ACS Photonics 3, 1762–1767 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (ECCS 1150952) and the University of California, Office of the President (UC-LFRP 12-LR-238415). This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant ECCS-1542148).

Author information

Authors and Affiliations

Authors

Contributions

Q.H. and D.J.S. conceived the project; Y.S., B.P., and Q.H. conducted the experiments and analyzed the data; and Y.S., B.P., and D.J.S. wrote the manuscript.

Corresponding author

Correspondence to Donald J. Sirbuly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

1. Huang, Q. et al. Nat. Photon. 11, 352–355 (2017): https://doi.org/10.1038/nphoton.2017.74

2. Ma, Y. G. et al. ACS Photonics 3, 1762–1767 (2016): https://doi.org/10.1021/acsphotonics.6b00424

Integrated supplementary information

Supplementary Figure 1

AutoCAD mask of the silicon trench pattern for a 4-inch wafer.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1

Supplementary Data

MATLAB script for processing the data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Polat, B., Huang, Q. et al. Nanoscale fiber-optic force sensors for mechanical probing at the molecular and cellular level. Nat Protoc 13, 2714–2739 (2018). https://doi.org/10.1038/s41596-018-0059-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0059-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing