An experimental murine model to study periodontitis

Abstract

Periodontal disease (PD) is a common dental disease associated with the interaction between dysbiotic oral microbiota and host immunity. It is a prevalent disease, resulting in loss of gingival tissue, periodontal ligament, cementum and alveolar bone. PD is a major form of tooth loss in the adult population. Experimental animal models have enabled the study of PD pathogenesis and are used to test new therapeutic approaches for treating the disease. The ligature-induced periodontitis model has several advantages as compared with other models, including rapid disease induction, predictable bone loss and the capacity to study periodontal tissue and alveolar bone regeneration because the model is established within the periodontal apparatus. Although mice are the most convenient and versatile animal models used in research, ligature-induced periodontitis has been more frequently used in large animals. This is mostly due to the technical challenges involved in consistently placing ligatures around murine teeth. To reduce the technical challenge associated with the traditional ligature model, we previously developed a simplified method to easily install a bacterially retentive ligature between two molars for inducing periodontitis. In this protocol, we provide detailed instructions for placement of the ligature and demonstrate how the model can be used to evaluate gingival tissue inflammation and alveolar bone loss over a period of 18 d after ligature placement. This model can also be used on germ-free mice to investigate the role of human oral bacteria in periodontitis in vivo. In conclusion, this protocol enables the mechanistic study of the pathogenesis of periodontitis in vivo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tools and technical procedures required to set up the simplified ligature model in mice.
Fig. 2: Time course of alveolar bone loss and osteoclast activation after insertion of ligature.
Fig. 3: Time course of gingival tissue inflammation after insertion of ligature.
Fig. 4: The expression of innate and adaptive immune genes at different time points after insertion of ligature.
Fig. 5: Human bacteria induced alveolar bone loss and gingival tissue inflammation when the ligature model was used in GF mice.

References

  1. 1.

    Hajishengallis, G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 35, 3–11 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10, 717–725 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Richards, D. Review finds that severe periodontitis affects 11% of the world population. Evid. Based Dent. 15, 70–71 (2014).

    Article  Google Scholar 

  4. 4.

    Kassebaum, N. J. et al. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J. Dent. Res. 93, 1045–1053 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Eke, P. I., Dye, B. A., Wei, L., Thornton-Evans, G. O. & Genco, R. J. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res. 91, 914–920 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Tonetti, M. S., Jepsen, S., Jin, L. & Otomo-Corgel, J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J. Clin. Periodontol. 44, 456–462 (2017).

    Article  Google Scholar 

  7. 7.

    de Pablo, P., Chapple, I. L., Buckley, C. D. & Dietrich, T. Periodontitis in systemic rheumatic diseases. Nat. Rev. Rheumatol. 5, 218–224 (2009).

    Article  Google Scholar 

  8. 8.

    Pinho, M. M., Faria-Almeida, R., Azevedo, E., Manso, M. C. & Martins, L. Periodontitis and atherosclerosis: an observational study. J. Periodontal. Res. 48, 452–457 (2013).

    Article  Google Scholar 

  9. 9.

    Yoon, A. J., Cheng, B., Philipone, E., Turner, R. & Lamster, I. B. Inflammatory biomarkers in saliva: assessing the strength of association of diabetes mellitus and periodontal status with the oral inflammatory burden. J. Clin. Periodontol. 39, 434–440 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Colombo, A. P. et al. Clinical and microbiological features of refractory periodontitis subjects. J. Clin. Periodontol. 25, 169–180 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    Levine, M., Lohinai, Z. & Teles, R. P. Low biofilm lysine content in refractory chronic periodontitis. J. Periodontol. 88, 181–189 (2017).

    Article  Google Scholar 

  12. 12.

    Oz, H. S. & Puleo, D. A. Animal models for periodontal disease. J. Biomed. Biotechnol. 2011, 754857, https://doi.org/10.1155/2011/754857 (2011).

    Article  Google Scholar 

  13. 13.

    Graves, D. T., Kang, J., Andriankaja, O., Wada, K. & Rossa, C. Jr. Animal models to study host-bacteria interactions involved in periodontitis. Front. Oral Biol. 15, 117–132 (2012).

    Article  Google Scholar 

  14. 14.

    Graves, D. T., Fine, D., Teng, Y. T., Van Dyke, T. E. & Hajishengallis, G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J. Clin. Periodontol. 35, 89–105 (2008).

    Article  Google Scholar 

  15. 15.

    Padial-Molina, M., Rodriguez, J. C., Volk, S. L. & Rios, H. F. Standardized in vivo model for studying novel regenerative approaches for multitissue bone-ligament interfaces. Nat. Protoc. 10, 1038–1049 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Abe, T. & Hajishengallis, G. Optimization of the ligature-induced periodontitis model in mice. J. Immunol. Methods 394, 49–54 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Weiner, G. S., DeMarco, T. J. & Bissada, N. F. Long term effect of systemic tetracycline administration on the severity of induced periodontitis in the rat. J. Periodontol. 50, 619–623 (1979).

    CAS  Article  Google Scholar 

  18. 18.

    Glowacki, A. J. et al. Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc. Natl. Acad. Sci. USA 110, 18525–18530 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Kajikawa, T. et al. Milk fat globule epidermal growth factor 8 inhibits periodontitis in non-human primates and its gingival crevicular fluid levels can differentiate periodontal health from disease in humans. J. Clin. Periodontol. 44, 472–483 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Martin, R., Bermudez-Humaran, L. G. & Langella, P. Gnotobiotic rodents: an in vivo model for the study of microbe-microbe interactions. Front. Microbiol. 7, 409 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Zenobia, C. et al. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis. Cell Microbiol. 15, 1419–1426 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Grover, M. & Kashyap, P. C. Germ-free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol. Motil. 26, 745–748 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Rovin, S., Costich, E. R. & Gordon, H. A. The influence of bacteria and irritation in the initiation of periodontal disease in germfree and conventional rats. J. Periodontal. Res. 1, 193–204 (1966).

    CAS  Article  Google Scholar 

  25. 25.

    Xiao, E. et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22, 120–128.e124 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Haara, O. et al. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development 139, 3189–3199 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Martins, M. D. et al. Epigenetic modifications of histones in periodontal disease. J. Dent. Res. 95, 215–222 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Jiao, Y. et al. Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host Microbe 13, 595–601 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Hu, Y. et al. IL-21/anti-Tim1/CD40 ligand promotes B10 activity in vitro and alleviates bone loss in experimental periodontitis in vivo. Biochim. Biophys. Acta 1863, 2149–2157 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Chun, J., Kim, K. Y., Lee, J. H. & Choi, Y. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101 (2010).

    Article  Google Scholar 

  31. 31.

    Abe, T. et al. Local complement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor (CD88) antagonist. J. Immunol. 189, 5442–5448 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Baker, P. J., Dixon, M. & Roopenian, D. C. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect. Immun. 68, 5864–5868 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    de Molon, R. S. et al. Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin. Oral Investig. 20, 1203–1216 (2016).

    Article  Google Scholar 

  34. 34.

    Genco, C. A., Cutler, C. W., Kapczynski, D., Maloney, K. & Arnold, R. R. A novel mouse model to study the virulence of and host response to Porphyromonas (Bacteroides) gingivalis. Infect. Immun. 59, 1255–1263 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Pouliot, M., Clish, C. B., Petasis, N. A., Van Dyke, T. E. & Serhan, C. N. Lipoxin A(4) analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: a role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry 39, 4761–4768 (2000).

    CAS  Article  Google Scholar 

  36. 36.

    Zubery, Y. et al. Bone resorption caused by three periodontal pathogens in vivo in mice is mediated in part by prostaglandin. Infect. Immun. 66, 4158–4162 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rath, H. et al. Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: an experimental and numerical study. FEMS Microbiol. Ecol. 93, https://doi.org/10.1093/femsec/fix010 (2017).

  38. 38.

    Periasamy, S. & Kolenbrander, P. E. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J. Bacteriol. 192, 2965–2972 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Guo, L., He, X. & Shi, W. Intercellular communications in multispecies oral microbial communities. Front. Microbiol. 5, 328, https://doi.org/10.3389/fmicb.2014.00328 (2014).

  40. 40.

    Heller, D., Silva-Boghossian, C. M., do Souto, R. M. & Colombo, A. P. Subgingival microbial profiles of generalized aggressive and chronic periodontal diseases. Arch. Oral Biol. 57, 973–980 (2012).

    Article  Google Scholar 

  41. 41.

    Zhou, P., Liu, J., Merritt, J. & Qi, F. A YadA-like autotransporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral Streptococci, Porphyromonas gingivalis, and human oral buccal cells. Mol. Oral Microbiol. 30, 269–279 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Chalmers, N. I., Palmer, R. J., Jr., Cisar, J. O. & Kolenbrander, P. E. Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque. J. Bacteriol. 190, 8145–8154 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    Lima, B. P., Shi, W. & Lux, R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen 6, https://doi.org/10.1002/mbo3.444 (2017).

    Article  Google Scholar 

  44. 44.

    Doi, H. et al. Potency of umbilical cord blood- and Wharton’s jelly-derived mesenchymal stem cells for scarless wound healing. Sci. Rep. 6, 18844, https://doi.org/10.1038/srep18844 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Salvi, G. E., Beck, J. D. & Offenbacher, S. PGE2, IL-1beta, and TNF-alpha responses in diabetics as modifiers of periodontal disease expression. Ann. Periodontol. 3, 40–50 (1998).

    CAS  Article  Google Scholar 

  46. 46.

    Korte, D. L. & Kinney, J. Personalized medicine: an update of salivary biomarkers for periodontal diseases. Periodontol. 2000 70, 26–37 (2016).

    Article  Google Scholar 

  47. 47.

    Cekici, A., Kantarci, A., Hasturk, H. & Van Dyke, T. E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2000 64, 57–80 (2014).

    Article  Google Scholar 

  48. 48.

    Jun, H. K., Jung, Y. J. & Choi, B. K. Treponema denticola, Porphyromonas gingivalis, and Tannerella forsythia induce cell death and release of endogenous danger signals. Arch. Oral Biol. 73, 72–78 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Rock, K. L. & Kono, H. The inflammatory response to cell death. Annu. Rev. Pathol. 3, 99–126 (2008).

    CAS  Article  Google Scholar 

  50. 50.

    Violant, D., Galofre, M., Nart, J. & Teles, R. P. In vitro evaluation of a multispecies oral biofilm on different implant surfaces. Biomed. Mater. 9, 035007, https://doi.org/10.1088/1748-6041/9/3/035007 (2014).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Foster, J. S. & Kolenbrander, P. E. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl. Environ. Microbiol. 70, 4340–4348 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants T90DE021986 and F32DE026688 (Y.J.), an IBM Junior Faculty Development Award from the University of North Carolina at Chapel Hill and grants K01DE027087 (J.M.), 5R01DE023836 (S.O.) and 5R01DE025207 (M.H.S.). We thank W.V. Giannobile of the University of Michigan School of Dentistry for constructive suggestions and helpful discussion. We thank B. Huang and J. Ashley of the Histology Research Core Facility at UNC for histological embedding and sectioning. We thank the Microscope Core facility for the images. We thank the UNC Biomedical Research Imaging Center for microCT scanning. We thank the Germ Free & Gnotobiotic Mouse Facilities at the University of Michigan and the Gnotobiotic Rodent Core Facility at the University of North Carolina for assistance with the human bacterial infection experiment. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

Y.J. and J.M. designed the experiments. Y.J., J.M. and M.S.G. performed the in vivo experiments. L.J. performed H&E and MPO staining and analysis. M.Z.M. performed TRAP staining and analysis. M.S.G. performed qRT-PCR and analysis using the RT2 Profiler Array. S.Z. and L.S. performed the microCT analysis. Y.J., J.M., T.M. and M.S.G. developed the murine dental bed and ligature holder. J.M. and Y.J. wrote and edited the manuscript together. S.O., N.I. and M.H.S. helped to develop the model and edited the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Yizu Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

1. Jiao, Y. et al. Cell Host Microbe 13, 595–601 (2013): https://doi.org/10.1016/j.chom.2013.04.005

Integrated supplementary information

Supplementary Figure 1

Typical colony morphology for S. gordonii, F. nucleatum and V. parvula on a TSA plate.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1

Reporting Summary

Supplementary Manual

Detailed top view of blueprints required for manufacture of the murine dental bed

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marchesan, J., Girnary, M.S., Jing, L. et al. An experimental murine model to study periodontitis. Nat Protoc 13, 2247–2267 (2018). https://doi.org/10.1038/s41596-018-0035-4

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing