Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology

Abstract

Insecticides are indispensable tools for plant protection in modern agriculture. Despite having highly heterogeneous structures, many neurotoxic insecticides use similar principles to inhibit or deregulate neuronal ion channels. Insecticides targeting pentameric ligand-gated channels are structural mimetics of neurotransmitters or manipulate and deregulate the proteins. Those binding to (pseudo-)tetrameric voltage-gated(-like) channels, on the other hand, are natural or synthetic compounds that directly block the ion-conducting pore or prevent conformational changes in the transmembrane domain necessary for opening and closing the pore. The use of a limited number of inhibition mechanisms can be problematic when resistances arise and become more widespread. Therefore, there is a rising interest in the development of insecticides with novel mechanisms that evade resistance and are pest-insect-specific. During the last decade, most known insecticide targets, many with bound compounds, have been structurally characterized, bringing the rational design of novel classes of agrochemicals within closer reach than ever before.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ion channels constitute important targets for neurotoxic insecticides.
Fig. 2: The RDL-like GABAA receptor.
Fig. 3: The nicotinic acetylcholine receptor nAChR.
Fig. 4: The glutamate-gated chloride channel GluCl.
Fig. 5: The voltage-gated sodium channel Para-like NaV.
Fig. 6: The ryanodine receptor.
Fig. 7: The calcium-gated potassium channel Slo.
Fig. 8: The transient receptor potential channels.

Similar content being viewed by others

References

  1. Casida, J. E. & Bryant, R. J. The ABCs of pesticide toxicology: amounts, biology, and chemistry. Toxicol. Res. 6, 755–763 (2017).

    Article  CAS  Google Scholar 

  2. Sparks, T. C. et al. Insecticides, biologics and nematicides: updates to IRAC’s mode of action classification—a tool for resistance management. Pestic. Biochem. Physiol. 167, 104587 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Casida, J. E. & Quistad, G. B. Why insecticides are more toxic to insects than people: the unique toxicology of insects. J. Pestic. Sci. 29, 81–86 (2004).

    Article  CAS  Google Scholar 

  5. Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).

    Article  CAS  Google Scholar 

  6. Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article  Google Scholar 

  7. Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. Eng. China 7, 177 (2019).

    Article  Google Scholar 

  8. Ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. E. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016). In-depth review on ion-channel insecticide targets, with a focus on genetics, molecular biology and occurrence of resistance.

  9. Casida, J. E. & Durkin, K. A. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58, 99–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Narahashi, T. Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxicol. 79, 1–14 (1996). The basis of ion channels’ potential as insecticide targets, because small imbalances in activity have tremendous effects.

    Article  CAS  PubMed  Google Scholar 

  11. Song, J. H. & Narahashi, T. Modulation of sodium channels of rat cerebellar Purkinje neurons by the pyrethroid tetramethrin. J. Pharmacol. Exp. Ther. 277, 445–453 (1996).

    CAS  PubMed  Google Scholar 

  12. Harrison, P. J., Vecerkova, T., Clare, D. K. & Quigley, A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J. Struct. Biol. 215, 107959 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Robertson, M. J., Meyerowitz, J. G. & Skiniotis, G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem. Sci. 47, 124–135 (2021). Review showing the potential of structure-based drug discovery with a focus on membrane proteins.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bloomquist, J. R. Ion channels as targets for insecticides. Annu. Rev. Entomol. 41, 163–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Howard, R. J. Elephants in the dark: insights and incongruities in pentameric ligand-gated ion channel models. J. Mol. Biol. 433, 167128 (2021). Summary of the structural knowledge of pLGICs and their ligand-modulated activation mechanism.

    Article  CAS  PubMed  Google Scholar 

  16. Yu, F. H. & Catterall, W. A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15 (2004).

    Article  PubMed  Google Scholar 

  17. Catterall, W. A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915–928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mody, I. & Pearce, R. A. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci. 27, 569–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Ratra, G. S., Kamita, S. G. & Casida, J. E. Role of human GABAA receptor β3 subunit in insecticide toxicity. Toxicol. Appl. Pharmacol. 172, 233–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Miller, P. S. & Aricescu, A. R. Crystal structure of a human GABAA receptor. Nature 512, 270–275 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sigel, E. & Steinmann, M. E. Structure, function, and modulation of GABAA receptors*. J. Biol. Chem. 287, 40224–40231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rudolph, U. & Knoflach, F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat. Rev. Drug Discov. 10, 685–697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu, S. et al. Structure of a human synaptic GABAA receptor. Nature 559, 67–72 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Phulera, S. et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. eLife 7, e39383 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Masiulis, S. et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565, 454–459 (2019). Structural basis of activation and inhibition of GABAA by competitive and non-competitive substances that reveals important principles for all pLGICs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gielen, M. & Corringer, P.-J. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J. Physiol. 596, 1873–1902 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scott, S. & Aricescu, A. R. A structural perspective on GABAA receptor pharmacology. Curr. Opin. Struct. Biol. 54, 189–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. McGonigle, I. & Lummis, S. C. R. RDL receptors. Biochem. Soc. Trans. 37, 1404–1406 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Henry, C. et al. Heterogeneous expression of GABA receptor-like subunits LCCH3 and GRD reveals functional diversity of GABA receptors in the honeybee Apis mellifera. Br. J. Pharmacol. 177, 3924–3940 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Casida, J. E. & Durkin, K. A. Novel GABA receptor pesticide targets. Pestic. Biochem. Physiol. 121, 22–30 (2015). Overview of different classes of GABAA-modulating compounds and mapping of their binding sites, revealing general patterns for the modulation of pLGICs.

    Article  CAS  PubMed  Google Scholar 

  31. Casida, J. E. Golden age of RyR and GABA-R diamide and isoxazoline insecticides: common genesis, serendipity, surprises, selectivity, and safety. Chem. Res. Toxicol. 28, 560–566 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, L., Durkin, K. A. & Casida, J. E. Structural model for γ-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site. Proc. Natl Acad. Sci. USA 103, 5185–5190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ffrench-Constant, R. H. & Roush, R. T. Gene mapping and cross-resistance in cyclodiene insecticide-resistant Drosophila melanogaster (Mg.). Genet. Res. 57, 17–21 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, C. & Casida, J. E. Insect γ-aminobutyric acid receptors and isoxazoline insecticides: toxicological profiles relative to the binding sites of [3H]fluralaner, [3H]-4′-ethynyl-4-n-propylbicycloorthobenzoate, and [3H]avermectin. J. Agric. Food Chem. 62, 1019–1024 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Bloomquist, J. R. in Biochemical Sites of Insecticide Action and Resistance (ed. Ishaaya, I.) 17–41 (Springer, 2001).

  36. Hibbs, R. E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011). This paper shows how avermectins allosterically activate GluCl (and some other pLGICs) by binding to the pore domain from the outside.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nemecz, Á., Prevost, M. S., Menny, A. & Corringer, P.-J. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 90, 452–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Changeux, J.-P. The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily*. J. Biol. Chem. 287, 40207–40215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, A. K. & Sattelle, D. B. in Insect Nicotinic Acetylcholine Receptors (ed. Thany, S. H.) Ch. 3 (Springer, 2010).

  40. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Rucktooa, P., Smit, A. B. & Sixma, T. K. Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem. Pharmacol. 78, 777–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Celie, P. H. N. et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907–914 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Gharpure, A. et al. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor. Neuron 104, 501–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walsh, R. M. Jr et al. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557, 261–265 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morales-Perez, C. L., Noviello, C. M. & Hibbs, R. E. X-ray structure of the human α4β2 nicotinic receptor. Nature 538, 411–415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zarkadas, E. et al. Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron 110, 1358–1370 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Rahman, M. M. et al. Structural mechanism of muscle nicotinic receptor desensitization and block by curare. Nat. Struct. Mol. Biol. 29, 386–394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Millar, N. S. & Denholm, I. Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invert. Neurosci. 7, 53–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Jeschke, P., Nauen, R. & Beck, M. E. Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew. Chem. Int. Ed. Engl. 52, 9464–9485 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Bass, C., Denholm, I., Williamson, M. S. & Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 121, 78–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Tomizawa, M. & Casida, J. E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol. 48, 339–364 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ihara, M. et al. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert. Neurosci. 8, 71–81 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ihara, M. et al. Studies on an acetylcholine binding protein identify a basic residue in loop G on the β1 strand as a new structural determinant of neonicotinoid actions. Mol. Pharmacol. 86, 736–746 (2014).

    Article  PubMed  Google Scholar 

  55. Alamiddine, Z. et al. Binding of sulfoxaflor to Aplysia californica-AChBP: computational insights from multiscale approaches. J. Chem. Inf. Model. 59, 3755–3769 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Talley, T. T. et al. Atomic interactions of neonicotinoid agonists with AChBP: molecular recognition of the distinctive electronegative pharmacophore. Proc. Natl Acad. Sci. USA 105, 7606–7611 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Sluijs, J. P. et al. Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr. Opin. Environ.Sustain. 5, 293–305 (2013).

    Article  Google Scholar 

  58. Matsuda, K., Kanaoka, S., Akamatsu, M. & Sattelle, D. B. Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol. Pharmacol. 76, 1–10 (2009). Review of the binding modes of the important class of neonicotinoids and the basis for species-specificity.

  59. Decourtye, A. & Devillers, J. in Insect Nicotinic Acetylcholine Receptors (ed. Thany, S. H.) Ch. 8 (Springer, 2010).

  60. Goulson, D. REVIEW: an overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).

    Article  Google Scholar 

  61. Puinean, A. M., Lansdell, S. J., Collins, T., Bielza, P. & Millar, N. S. A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis. J. Neurochem. 124, 590–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sparks, T. C., Crouse, G. D. & Durst, G. Natural products as insecticides: the biology, biochemistry and quantitative structure–activity relationships of spinosyns and spinosoids. Pest Manag. Sci. 57, 896–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Sparks, T. C. et al. The spinosyns, spinosad, spinetoram, and synthetic spinosyn mimics—discovery, exploration, and evolution of a natural product chemistry and the impact of computational tools. Pest Manag. Sci. 77, 3637–3649 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Kirst, H. A. The spinosyn family of insecticides: realizing the potential of natural products research. J. Antibiot. 63, 101–111 (2010).

    Article  CAS  Google Scholar 

  65. Mayes, M. A., Thompson, G. D., Husband, B. & Miles, M. M. in Reviews of Environmental Contamination and Toxicology 1st edn., Vol. 179 (ed. Ware, G.) 37–71 (Springer, 2003).

  66. Wolstenholme, A. J. Glutamate-gated chloride channels*. J. Biol. Chem. 287, 40232–40238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L. & Yeh, J. Z. Glutamate-activated chloride channels: unique fipronil targets present in insects but not in mammals. Pestic. Biochem. Physiol. 97, 149–152 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Knipple, D. C. & Soderlund, D. M. The ligand-gated chloride channel gene family of Drosophila melanogaster. Pestic. Biochem. Physiol. 97, 140–148 (2010).

    Article  CAS  Google Scholar 

  69. Collins, B., Kane, E. A., Reeves, D. C., Akabas, M. H. & Blau, J. Balance of activity between LNvs and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron 74, 706–718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao, X., Yeh, J. Z., Salgado, V. L. & Narahashi, T. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. J. Pharmacol. Exp. Ther. 310, 192–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Campbell, W. C. Ivermectin and Abamectin 1st edn. (ed. Campbell, W. C.) (Springer, 1989).

  72. Althoff, T., Hibbs, R. E., Banerjee, S. & Gouaux, E. X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512, 333–337 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Catterall, W. A. in Cardiac Electrophysiology: From Cell to Bedside 7th edn. (eds Zipes, D. P. et al.) 1–11 (Elsevier, 2018).

  74. Catterall, W. A. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 590, 2577–2589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bagal, S. K., Marron, B. E., Owen, R. M., Storer, R. I. & Swain, N. A. Voltage gated sodium channels as drug discovery targets. Channels 9, 360–366 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Thackeray, J. R. & Ganetzky, B. Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para. Genetics 141, 203–214 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tseng, T.-T. et al. Sodium channel auxiliary subunits. J. Mol. Microbiol. Biotechnol. 12, 249–262 (2007).

    CAS  PubMed  Google Scholar 

  78. Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shen, H. et al. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355, eaal4326 (2017).

    Article  PubMed  Google Scholar 

  80. Yan, Z. et al. Structure of the NaV1.4–β1 complex from electric eel. Cell 170, 470–482 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Pan, X. et al. Structure of the human voltage-gated sodium channel NaV1.4 in complex with β1. Science 362, eaau2486 (2018).

    Article  PubMed  Google Scholar 

  82. Zhang, J. et al. Simulating the ion permeation and ion selection for a eukaryotic voltage-gated sodium channel NaVPaS. Protein Cell 9, 580–585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goldin, A. L. Mechanisms of sodium channel inactivation. Curr. Opin. Neurobiol. 13, 284–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Shen, H. et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362, eaauu2596 (2018).

    Article  Google Scholar 

  85. Wang, S.-Y., Mitchell, J., Tikhonov, D. B., Zhorov, B. S. & Wang, G. K. How batrachotoxin modifies the sodium channel permeation pathway: computer modeling and site-directed mutagenesis. Mol. Pharmacol. 69, 788–795 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Pan, X. et al. Molecular basis for pore blockade of human Na+ channel NaV1.2 by the μ-conotoxin KIIIA. Science 363, 1309–1313 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human NaV1.7 channel in complex with auxiliary subunits and animal toxins. Science 363, 1303–1308 (2019). One representative of a series of impressive structural papers on NaV, illustrating the asymmetric ion translocation path and the binding sites of several toxins.

    Article  CAS  PubMed  Google Scholar 

  88. Clairfeuille, T. et al. Structural basis of α-scorpion toxin action on NaV channels. Science 363, eaav8573 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Zhorov, B. S. & Dong, K. Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel. Neurotoxicology 60, 171–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Dong, K. Insect sodium channels and insecticide resistance. Invert. Neurosci. 7, 17–30 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Du, Y. et al. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc. Natl Acad. Sci. USA 110, 11785–11790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Davies, T. G. E., Field, L. M., Usherwood, P. N. R. & Williamson, M. S. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59, 151–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Silver, K. S. et al. in Advances in Insect Physiology Vol. 46 (ed. Cohen, E.) Ch. 5 (Academic Press, 2014).

  94. Silver, K., Dong, K. & Zhorov, B. S. Molecular mechanism of action and selectivity of sodium channel blocker insecticides. Curr. Med. Chem. 24, 2912–2924 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peschel, A. et al. Two for the price of one: heterobivalent ligand design targeting two binding sites on voltage-gated sodium channels slows ligand dissociation and enhances potency. J. Med. Chem. 63, 12773–12785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tran, H. N. T. et al. Enzymatic ligation of a pore blocker toxin and a gating modifier toxin: creating double-knotted peptides with improved sodium channel NaV1.7 Inhibition. Bioconjugate Chem. 31, 64–73 (2020).

  97. Smith, J. S. et al. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J. Gen. Physiol. 92, 1–26 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. Sattelle, D. B., Cordova, D. & Cheek, T. R. Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invert. Neurosci. 8, 107–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Van Petegem, F. Ryanodine receptors: allosteric ion channel giants. J. Mol. Biol. 427, 31–53 (2015).

    Article  PubMed  Google Scholar 

  100. Meissner, G. The structural basis of ryanodine receptor ion channel function. J. Gen. Physiol. 149, 1065–1089 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paolini, C., Protasi, F. & Franzini-Armstrong, C. The relative position of RyR feet and DHPR tetrads in skeletal muscle. J. Mol. Biol. 342, 145–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Efremov, R. G., Leitner, A., Aebersold, R. & Raunser, S. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517, 39–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. des Georges, A. et al. Structural basis for gating and activation of RyR1. Cell 167, 145–157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yan, Z. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517, 50–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Zalk, R. et al. Structure of a mammalian ryanodine receptor. Nature 517, 44–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Yuchi, Z. & Van Petegem, F. Ryanodine receptors under the magnifying lens: insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 59, 209–227 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Ma, R. et al. Structural basis for diamide modulation of ryanodine receptor. Nat. Chem. Biol. 16, 1246–1254 (2020). A structural explanation for the species-specific activation of RyR by diamide insecticides.

    Article  CAS  PubMed  Google Scholar 

  108. Nauen, R. Insecticide mode of action: return of the ryanodine receptor. Pest. Manag. Sci. 62, 690–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Cordova, D. et al. Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Physiol. 84, 196–214 (2006).

    Article  CAS  Google Scholar 

  110. Chen, J., Xue, L., Wei, R., Liu, S. & Yin, C.-C. The insecticide chlorantraniliprole is a weak activator of mammalian skeletal ryanodine receptor/Ca2+ release channel. Biochem. Biophys. Res. Commun. 508, 633–639 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Griguoli, M., Sgritta, M. & Cherubini, E. Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications. J. Physiol. 594, 3489–3500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kimm, T., Khaliq, Z. M. & Bean, B. P. Differential regulation of action potential shape and burst-frequency firing by BK and KV2 channels in substantia nigra dopaminergic neurons. J. Neurosci. 35, 16404–16417 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Raffaelli, G., Saviane, C., Mohajerani, M. H., Pedarzani, P. & Cherubini, E. BK potassium channels control transmitter release at CA3–CA3 synapses in the rat hippocampus. J. Physiol. 557, 147–157 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, Z.-W., Saifee, O., Nonet, M. L. & Salkoff, L. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32, 867–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Hite, R. K., Tao, X. & MacKinnon, R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature 541, 52–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Tao, X. & MacKinnon, R. Molecular structures of the human Slo1 K+ channel in complex with β4. eLife 8, e51409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tao, X., Hite, R. K. & MacKinnon, R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541, 46–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Gunning, S. J. et al. The Janus-faced atracotoxins are specific blockers of invertebrate KCa channels. FEBS J. 275, 4045–4059 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Kaczorowski, G. J., Knaus, H. G., Leonard, R. J., McManus, O. B. & Garcia, M. L. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J. Bioenerg. Biomembr. 28, 255–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Knaus, H. G. et al. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33, 5819–5828 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Raisch, T. et al. Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM. Nat. Commun. 12, 1–12 (2021). Cryo-EM structures of a Slo channel with bound toxic molecules which could serve as leads for development of new generations of insecticides.

    Article  Google Scholar 

  122. Crisford, A. et al. The cyclooctadepsipeptide anthelmintic emodepside differentially modulates nematode, insect and human calcium-activated potassium (SLO) channel alpha subunits. PLoS Negl. Trop. Dis. 9, e0004062 (2015).

  123. Kulke, D. et al. Characterization of the Ca2+-gated and voltage-dependent K+-channel Slo-1 of nematodes and its interaction with emodepside. PLoS Negl. Trop. Dis. 8, e3401 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Cao, E. Structural mechanisms of transient receptor potential ion channels. J. Gen. Physiol. 152, e201811998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Salgado, V. L. Insect TRP channels as targets for insecticides and repellents. J. Pestic. Sci. 42, 1–6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gees, M., Owsianik, G., Nilius, B. & Voets, T. TRP channels. Compr. Physiol. 2, 563–608 (2012).

    Article  PubMed  Google Scholar 

  127. Madej, M. G. & Ziegler, C. M. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch. 470, 213–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Zhao, Y., McVeigh, B. M. & Moiseenkova-Bell, V. Y. Structural pharmacology of TRP channels. J. Mol. Biol. 433, 166914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Moran, M. M. TRP channels as potential drug targets. Annu. Rev. Pharmacol. Toxicol. 58, 309–330 (2018). Different classes of TRP channels have been identified and characterized as potential insecticide targets.

    Article  CAS  PubMed  Google Scholar 

  130. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Nagata, K. TRP channels as target sites for insecticides: physiology, pharmacology and toxicology. Invert. Neurosci. 7, 31–37 (2007).

  132. Kandasamy, R., Costea, P. I., Stam, L. & Nesterov, A. TRPV channel nanchung and TRPA channel water witch form insecticide-activated complexes. Insect Biochem. Mol. Biol. 149, 103835 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Nesterov, A. et al. TRP channels in insect stretch receptors as insecticide targets. Neuron 86, 665–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Kandasamy, R. et al. Afidopyropen: new and potent modulator of insect transient receptor potential channels. Insect Biochem. Mol. Biol. 84, 32–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Spalthoff, C., Salgado, V. L., Theis, M., Geurten, B. R. H. & Göpfert, M. C. Flonicamid metabolite 4-trifluoromethylnicotinamide is a chordotonal organ modulator insecticide†. Pest Manag. Sci. 78, 4802–4808 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Upadhyay, A. et al. Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel. Nat. Commun. 7, 13135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Spalthoff, C. et al. The novel pyridazine pyrazolecarboxamide insecticide dimpropyridaz inhibits chordotonal organ function upstream of Trpv channels. Pest Manag. Sci. https://doi.org/10.1002/ps.7352 (2023).

    Article  PubMed  Google Scholar 

  138. Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Peng, G. et al. Plant-derived tick repellents activate the honey bee ectoparasitic mite TRPA1. Cell Rep. 12, 190–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Matsuura, H., Sokabe, T., Kohno, K., Tominaga, M. & Kadowaki, T. Evolutionary conservation and changes in insect TRP channels. BMC Evol. Biol. 9, 228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jin, P. et al. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547, 118–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huffer, K. E., Aleksandrova, A. A., Jara-Oseguera, A., Forrest, L. R. & Swartz, K. J. Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. eLife 9, e58660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Copping, L. G. & Menn, J. J. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56, 651–676 (2000).

    Article  CAS  Google Scholar 

  144. Glare, T. et al. Have biopesticides come of age? Trends Biotechnol. 30, 250–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Nicholson, G. M. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon 49, 490–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Herzig, V. et al. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami. Sci. Rep. 6, 29538 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. King, G. F. & Hardy, M. C. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 58, 475–496 (2013). A peek beyond small chemical insecticides by evaluating peptidic spider toxins for their ability to specifically kill pest insects.

    Article  CAS  PubMed  Google Scholar 

  148. Sukiran, N. A. et al. Enhancing the oral and topical insecticidal efficacy of a commercialized spider venom peptide biopesticide via fusion to the carrier snowdrop lectin (Galanthus nivalis agglutinin). Pest Manag. Sci. 79, 284–294 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Nakasu, E. Y. T. et al. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees. Proc. Biol. Sci. 281, (2014).

  150. Chambers, C. et al. Insecticidal spider toxins are high affinity positive allosteric modulators of the nicotinic acetylcholine receptor. FEBS Lett. 593, 1336–1350 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Bonning, B. C. & Chougule, N. P. Delivery of intrahemocoelic peptides for insect pest management. Trends Biotechnol. 32, 91–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Fitches, E. C., Pyati, P., King, G. F. & Gatehouse, J. A. Fusion to snowdrop lectin magnifies the oral activity of insecticidal ω-hexatoxin-Hv1a peptide by enabling its delivery to the central nervous system. PLoS ONE 7, e39389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kumar, K. et al. Genetically modified crops: current status and future prospects. Planta 251, 91 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Javaid, S. et al. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. Sci. Rep. 6, 34706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lovett, B. et al. Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso. Science 364, 894–897 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. Int. 22, 68–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. ChemSketch, version 2022.2.0 (Advanced Chemistry Development, Inc., ACD/Labs); www.acdlabs.com

Download references

Acknowledgements

We thank D. Vinayagam for discussions on the topic, especially about TRP channels and the ryanodine receptor, and B. Hosseini for commenting on the final manuscript. This work was funded by the Max Planck Society (to S.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias Raisch or Stefan Raunser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Richard ffrench-Constant, Chia-Hsueh Lee and Alexandre Nesterov for their contribution to the peer review of this work. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raisch, T., Raunser, S. The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology. Nat Struct Mol Biol 30, 1411–1427 (2023). https://doi.org/10.1038/s41594-023-01113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01113-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research