Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quaternary glucocorticoid receptor structure highlights allosteric interdomain communication

Abstract

The glucocorticoid receptor (GR) is a ligand-activated transcription factor that binds DNA and assembles co-regulator complexes to regulate gene transcription. GR agonists are widely prescribed to people with inflammatory and autoimmune diseases. Here we present high-resolution, multidomain structures of GR in complex with ligand, DNA and co-regulator peptide. The structures reveal how the receptor forms an asymmetric dimer on the DNA and provide a detailed view of the domain interactions within and across the two monomers. Hydrogen–deuterium exchange and DNA-binding experiments demonstrate that ligand-dependent structural changes are communicated across the different domains in the full-length receptor. This study demonstrates how GR forms a distinct architecture on DNA and how signal transmission can be modulated by the ligand pharmacophore, provides a platform to build a new level of understanding of how receptor modifications can drive disease progression and offers key insight for future drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GR protein constructs and agonists used in this study.
Fig. 2: Structure of GRΔN–vel in complex with SGK1 and PGC1α134–154.
Fig. 3: Conservation of GR and ER LBD domains.
Fig. 4: The domain organization of the multidomain nuclear receptor X-ray structures on DNA.
Fig. 5: Ligand-specific structural rearrangements.
Fig. 6: Mutant receptor functional data.

Similar content being viewed by others

Data availability

The X-ray data and coordinates for the GRΔN–vel–SGK1–PGC1α, GRLBD–vel–PGC1α and GRΔN–FF–SGK1–PGC1α structures are deposited in the PDB (7PRW, 7PRX and 7PRV, respectively). The PDB 3G9O of a GR DBD dimer bound to DNA was used for structural comparison. The degree of sequence conservation of the ER LBD dimer interface was blotted on the PDB structure 3ERD.

All data generated and/or analyzed in the current study are included in this published article (and its supplementary information files). Source data are provided with this paper.

References

  1. Eick, G. N. & Thornton, J. W. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol. Cell. Endocrinol. 334, 31–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Weikum, E. R., Knuesel, M. T., Ortlund, E. A. & Yamamoto, K. R. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 18, 159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Köhler, C. et al. Dynamic allosteric communication pathway directing differential activation of the glucocorticoid receptor. Sci. Adv. 6, eabb5277 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Watson, L. C. et al. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat. Struct. Mol. Biol. 20, 876 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, J. et al. DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex. Nat. Struct. Mol. Biol. 18, 556–563 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Meijsing, S. H. et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324, 407–410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiller, B. J., Chodankar, R., Watson, L. C., Stallcup, M. R. & Yamamoto, K. R. Glucocorticoid receptor binds half sites as a monomer and regulates specific target genes. Genome Biol. 15, 418 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hudson, W. H., Youn, C. & Ortlund, E. A. The structural basis of direct glucocorticoid-mediated transrepression. Nat. Struct. Mol. Biol. 20, 53 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Presman, D. M. et al. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc. Natl Acad. Sci. USA 113, 8236–8241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Presman, D. M. et al. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor. PLoS Biol. 12, e1001813 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Johnson, T. A., Paakinaho, V., Kim, S., Hager, G. L. & Presman, D. M. Genome-wide binding potential and regulatory activity of the glucocorticoid receptor’s monomeric and dimeric forms. Nat. Commun. 12, 1987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chandra, V. et al. Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature 456, 350 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chandra, V. et al. Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature 495, 394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chandra, V. et al. The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission. Nat. Commun. 8, 868 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lou, X. et al. Structure of the retinoid X receptor α–liver X receptor β (RXRα–LXRβ) heterodimer on DNA. Nat. Struct. Mol. Biol. 21, 277–281 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Veleiro, A. S., Alvarez, L. D., Eduardo, S. L. & Burton, G. Structure of the glucocorticoid receptor, a flexible protein that can adapt to different ligands. ChemMedChem 5, 649–659 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Hemmerling, M. et al. Selective nonsteroidal glucocorticoid receptor modulators for the inhaled treatment of pulmonary diseases. J. Med. Chem. 60, 8591–8605 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Biggadike, K. et al. X-ray crystal structure of the novel enhanced-affinity glucocorticoid agonist fluticasone furoate in the glucocorticoid receptor−ligand binding domain. J. Med. Chem. 51, 3349–3352 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, M. N. et al. Efficacy and safety of AZD7594, an inhaled non-steroidal selective glucocorticoid receptor modulator, in patients with asthma: a phase 2a randomized, double blind, placebo-controlled crossover trial. Respiratory Res. 20, 37 (2019).

    Article  Google Scholar 

  20. Shefrin, A. E. & Goldman, R. D. Use of dexamethasone and prednisone in acute asthma exacerbations in pediatric patients. Can. Fam. Physician 55, 704–706 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Syed, Y. Y. Fluticasone furoate/vilanterol: a review of its use in patients with asthma. Drugs 75, 407–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Grasso, E. M., Majumdar, A., Wrabl, J. O., Frueh, D. P. & Hilser, V. J. Conserved allosteric ensembles in disordered proteins using TROSY/anti-TROSY R2-filtered spectroscopy. Biophys. J. 120, 2498–2510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110, 93–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Bianchetti, L. et al. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain. Biochim. Biophys. Acta 1862, 1810–1825 (2018).

    Article  CAS  Google Scholar 

  26. Paakinaho, V., Johnson, T. A., Presman, D. M. & Hager, G. L. Glucocorticoid receptor quaternary structure drives chromatin occupancy and transcriptional outcome. Genome Res. 29, 1223–1234 (2019).

  27. Presman, D. M. & Hager, G. L. More than meets the dimer: what is the quaternary structure of the glucocorticoid receptor? Transcription 8, 32–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, D. N., Jacobs, T. M. & Kuhlman, B. Boosting protein stability with the computational design of β-sheet surfaces. Protein Sci. 25, 702–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Timmermans, S. et al. Point mutation I634A in the glucocorticoid receptor causes embryonic lethality by reduced ligand binding. J. Biol. Chem. 298, 101574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robblee, J. P., Miura, M. T. & Bain, D. L. Glucocorticoid receptor–promoter interactions: energetic dissection suggests a framework for the specificity of steroid receptor-mediated gene regulation. Biochemistry 51, 4463–4472 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Hochberg, G. K. A. et al. A hydrophobic ratchet entrenches molecular complexes. Nature 588, 503–508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tamrazi, A., Carlson, K. E., Daniels, J. R., Hurth, K. M. & Katzenellenbogen, J. A. Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol. Endocrinol. 16, 2706–2719 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Maletta, M. et al. The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Nat. Commun. 5, 4139 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Orlov, I., Rochel, N., Moras, D. & Klaholz, B. P. Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J. 31, 291–300 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Bourguet, W. et al. Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol. Cell 5, 289–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Duda, K., Chi, Y.-I. & Shoelson, S. E. Structural basis for HNF-4α activation by ligand and coactivator binding. J. Biol. Chem. 279, 23311–23316 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Gampe, R. T. et al. Asymmetry in the PPARγ/RXRα crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol. Cell 5, 545–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Svensson, S. et al. Crystal structure of the heterodimeric complex of LXRα and RXRβ ligand-binding domains in a fully agonistic conformation. EMBO J. 22, 4625–4633 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yi, P. et al. Structure of a biologically active estrogen receptor–coactivator complex on DNA. Mol. Cell 57, 1047–1058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wasmuth, E. V. et al. Allosteric interactions prime androgen receptor dimerization and activation. Mol. Cell 82, 2021–2031(2022).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, X. et al. Structural insights of transcriptionally active, full-length androgen receptor coactivator complexes. Mol. Cell 79, 812–823.e814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hegelund Myrbäck, T. et al. Effects of a selective glucocorticoid receptor modulator (AZD9567) versus prednisolone in healthy volunteers: two phase 1, single-blind, randomised controlled trials. Lancet Rheumatol. 2, e31–e41 (2020).

    Article  Google Scholar 

  43. Ripa, L. et al. Discovery of a novel oral glucocorticoid receptor modulator (AZD9567) with improved side effect profile. J. Med. Chem. 61, 1785–1799 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, X. et al. Disruption of a key ligand-H-bond network drives dissociative properties in vamorolone for Duchenne muscular dystrophy treatment. Proc. Natl Acad. Sci. USA 117, 24285–24293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edman, K. et al. Ligand binding mechanism in steroid receptors: from conserved plasticity to differential evolutionary constraints. Structure 23, 2280–2290 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Weis, D. D. (ed) Hydrogen Exchange Mass Spectrometry of Proteins: Fundamentals, Methods, and Applications (John Wiley & Sons, Ltd, 2016).

  47. Heck, S. et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 13, 4087–4095 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hurley, D. M. et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J. Clin. Investig. 87, 680–686 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benedek, T. G. History of the development of corticosteroid therapy. Clin. Exp. Rheumatol. 29, S-5-12 (2011).

    PubMed  Google Scholar 

  50. Gehring, U. & Hotz, A. Photoaffinity labeling and partial proteolysis of wild-type and variant glucocorticoid receptors. Biochemistry 22, 4013–4018 (1983).

    Article  CAS  PubMed  Google Scholar 

  51. Simons, S. S. Jr & Thompson, E. B. Dexamethasone 21-mesylate: an affinity label of glucocorticoid receptors from rat hepatoma tissue culture cells. Proc. Natl Acad. Sci. USA 78, 3541–3545 (1981).

  52. Hollenberg, S. M. et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318, 635–641 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miesfeld, R. et al. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 46, 389–399 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Hudson, W. H. et al. Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc. Natl Acad. Sci. USA 113, 326–331 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Galliher-Beckley, A. J., Williams, J. G., Collins, J. B. & Cidlowski, J. A. Glycogen synthase kinase 3β-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol. Cell. Biol. 28, 7309–7322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carlsson, P., Koehler, K. F. & Nilsson, L. Glucocorticoid receptor point mutation V571M facilitates coactivator and ligand binding by structural rearrangement and stabilization. Mol. Endocrinol. 19, 1960–1977 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Kauppi, B. et al. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J. Biol. Chem. 278, 22748–22754 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011).

  59. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bricogne, G. et al. BUSTER (Global Phasing, 2017).

  61. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

  62. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976).

    Article  Google Scholar 

  64. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gluzman, Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities, and we would like to thank the beamline staff for assistance in using beamline ID30A-1/MASSIF-1 and ID23-1. S.P. and C.K. were supported by the AstraZeneca postdoctoral program. The authors would also like to acknowledge additional support provided by the AstraZeneca Respiratory & Immunology therapeutic area. We thank J. Steele, R. Maciewicz, N.-O. Hermansson, M. Lepistö and R. Neutze for scientific discussions. This work was supported by CNRS, Inserm, Institut National du Cancer (INCa_16099), Fondation pour la Recherche Médicale (FRM), Agence Nationale pour la Recherche (ANR) and the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INSB-05-01, Instruct-ERIC, and the French Proteomic Infrastructure ProFI ANR-10-INBS-08-03.

Author information

Authors and Affiliations

Authors

Contributions

S.P. purified the proteins and crystallized the GRΔN complexes. C.K. purified the wild-type GRLBD protein. L.W. crystallized the GRLBD. S.P. and K.E. solved the structures and wrote the manuscript with input from all authors. S.P. and C.A.J. performed HDX experiments and analyzed the data. S.P. and A.G. performed fluorescence polarization assays. S.P., M.C. and E.G. performed SEC-MALS and analyzed the data. P.J. analyzed the sequence conservation of GR and ER. B.C., D.Ö., L.F.R., S.P., K.E., I.D. and S.D. designed and cloned constructs and performed cell assays. B.B., B.P.K. and I.M.L.B. helped to conceive and conceptualize the study and to interpret structural data.

Corresponding author

Correspondence to Karl Edman.

Ethics declarations

Competing interests

S.P., L.W., C.A.J., A.G., E.G., B.C., C.K., M.C., D.Ö., P.J., L.F.R., I.D., S.D. and K.E. were employed by AstraZeneca at the time of the study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Keith Yamamoto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Editor recognition statement (if applicable to your journal): Primary Handling Editors: Florian Ullrich, Katarzyna Ciazynska and Carolina Perdigoto, in collaboration with the Nature Structural & Molecular Biology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SEC-MALS of GRΔN-vel, GRΔN-FF, GRΔN-vel-SGK1-PGC1α, GRΔN-FF-SGK1-PGC1α, GRΔN-vel-SGK1-half1-PGC1α, GRΔN-vel)-SGK1-half2-PGC1α and GR-vel.

a, The monomeric GR proteins and GR complexes eluted as single peaks. b, The experimentally determined and expected molecular weights. c, GRΔN proteins and GRΔN-SGK1-PGC1α complexes separated on a native PAGE. The experiments were repeated at least three times.

Source data

Extended Data Fig. 2 The GRΔN-vel-SGK1-PGC1α crystal lattice.

The crystal lattice a, orthogonal to the DNA and b, turned by 90 degrees. c The crystal contact mediated by H1.

Extended Data Fig. 3 GRΔN-vel-SGK1-PGC1α domains overlaid on structures of the isolated domains.

a, DBD1 (purple), DBD2 (green) and dsDNA (red) overlaid on the structure of the DBD dimer alone on the same GBS (PDB: 3G9O, all in white). Zn atoms are denoted as gray and white spheres, respectively. b, LBD1 (blue) with velsecorat (magenta) and coactivator peptide PGC1α134–154 (yellow) overlaid on the structure of GRLBD (white) in complex with velsecorat (black) and coactivator peptide PGC1α134–154 (black). c, LBD2 (green) with velsecorat (magenta) overlayed on the structure of GRLBD (white) in complex with velsecorat (black) and coactivator peptide PGC1α134–154 (black).

Extended Data Fig. 4 Position of I628 in the GRΔN-vel-SGK1-PGC1α complex.

The location of the residue I628 in the quaternary complex is shown a, in LBD1 and b, in LBD2. GR LBD helix numbering is annotated within the circles.

Extended Data Fig. 5 Sequence conservation of the GR LBD.

Alignment of a set of diverse GR related vertebrate sequences with a pairwise identity of 37–84%. The mean pairwise column identity of each residue as calculated by Geneious Prime is shown as bars in the top graph. The residues involved in the LBD:LBD and LBD:DBD interfaces are indicated by orange and green boxes, respectively.

Extended Data Fig. 6 Sequence conservation of the ER LBD.

Alignment of a set of diverse ER related vertebrate sequences with a pairwise identity of 38–90%. The mean pairwise column identity of each residue as calculated by Geneious Prime is shown as bars in the top graph. LBD dimer interface residues are highlighted with orange boxes.

Extended Data Fig. 7 Sequence conservation of key interfaces in the GRΔNvel-SGK1-PGC1α complex.

Conservation of GR LBD1 residues colored according to column identity between 0.4 (white) and 1.0 (blue) and shown as a surface highlighting the LBD1 interface with a, the DBD and DNA and b, the PGC1α peptide (yellow).

Extended Data Fig. 8 Fluticasone furoate rearranges the region where H6 and H7 meet.

a, Overlay of the GRΔN-FF-SGK1-PGC1α LBD1 (white) with PGC1α peptide in black on the GRΔN-vel-SGK1-PGC1α LBD1 (blue) with PGC1α peptide in yellow. Fluticasone furoate and velsecorat are shown in black and magenta, respectively. b, Fluticasone furoate repositions Q642 and pushes on D638 and M639, rearranging the H6-H7 loop. Helix numbering is annotated within the circles.

Extended Data Fig. 9 Relative deuteration of specific peptides in GR-vel-SGK1-PGC1α, GR-FF-SGK1-PGC1α, GR-dex-SGK1-PGC1α, GR-vel, GR-FF and GR-dex complexes and protein coverage of GR and GR-SGK1-PGC1α in HDX-MS.

a, peptide 425–436. b, peptide 536–544. c, peptide 628–636. Data points are mean +/− SD of 3 independent replicates. d, Peptides used for HDX-MS analysis of GR. A coverage of 89.2% of the sequence was achieved. e, Peptides used for HDX-MS analysis of GR-SGK-PGC1α complexes. A coverage of 61.8% of the sequence was achieved.

Source data

Extended Data Fig. 10 HDX difference plots showing deuterium uptake difference between (complex A) – (complex B) for all peptides.

Negative value indicate that peptides are protected in A relative to B and vice versa.

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Validation of Cos7 cells including mycoplasma report and barcoding form ECACC

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postel, S., Wissler, L., Johansson, C.A. et al. Quaternary glucocorticoid receptor structure highlights allosteric interdomain communication. Nat Struct Mol Biol 30, 286–295 (2023). https://doi.org/10.1038/s41594-022-00914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00914-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research