Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state

Abstract

Chromatin remodelers are ATP-dependent enzymes that reorganize nucleosomes within all eukaryotic genomes. Here we report a complex of the Chd1 remodeler bound to a nucleosome in a nucleotide-free state, determined by cryo-EM to 2.3 Å resolution. The remodeler stimulates the nucleosome to absorb an additional nucleotide on each strand at two different locations: on the tracking strand within the ATPase binding site and on the guide strand one helical turn from the ATPase motor. Remarkably, the additional nucleotide on the tracking strand is associated with a local transformation toward an A-form geometry, explaining how sequential ratcheting of each DNA strand occurs. The structure also reveals a histone-binding motif, ChEx, which can block opposing remodelers on the nucleosome and may allow Chd1 to participate in histone reorganization during transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the Chd1 remodeler bound to a nucleosome in the nucleotide-free state.
Fig. 2: DNA distortions induced by the nucleotide-free state of the Chd1 ATPase motor.
Fig. 3: Interactions between the Chd1 ATPase motor and DNA at SHL2.
Fig. 4: The Chd1 ChEx segment binds the histone core.
Fig. 5: The ChEx segment competes with H2A/H2B acidic patch binding elements.
Fig. 6: ChEx can block other remodelers from sliding nucleosomes.
Fig. 7: Model for DNA translocation based on changes in duplex geometry.

Similar content being viewed by others

Data availability

The raw cryo-EM data have been deposited in EMPIAR (EMPIAR-10876). The cryo-EM density maps have been deposited in the Electron Microscopy Data Bank as EMD-25479 (nucleosome-bound Chd1), EMD-25480 (nucleosome-bound Chd1 with well-defined DBD), EMD-25483 (nucleosome-ChEx) and EMD-25481 (nucleosome-only). Atomic models built using cryo-EM data have been deposited in the RCSB Protein Data Bank with PDB codes 7TN2 (nucleosome-bound Chd1) and 7SWY (nucleosome-only). The MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD025287. This study included analysis of previously determined nucleosome–remodeler complexes (PDB codes 5O9G, 6IRO, 6PWF, 6IY2, 6IY3, 6FML), nucleosome–LANA complex (1ZLA) and nucleosome-only models (1KX3, 1KX5, 3UT9, 5F99, 5Y0D, 6IPU, 6WZ5, 6ZHX, 7OHC). Source data are provided with this paper.

Code availability

Scripts to analyze and visualize the structures have been deposited at GitHub (https://github.com/gdbowman/).

References

  1. Piatti, P. et al. Embryonic stem cell differentiation requires full length Chd1. Sci. Rep. 5, 8007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guzman-Ayala, M. et al. Chd1 is essential for the high transcriptional output and rapid growth of the mouse epiblast. Development 142, 118–127 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Basta, J. & Rauchman, M. The nucleosome remodeling and deacetylase complex in development and disease. Transl. Res. 165, 36–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Koh, F. M. et al. Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc. Natl Acad. Sci. USA 112, E1734–E1743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846–1856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krogan, N. J. et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol. Cell. Biol. 22, 6979–6992 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Warner, M. H., Roinick, K. L. & Arndt, K. M. Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol. Cell. Biol. 27, 6103–6115 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stokes, D. G., Tartof, K. D. & Perry, R. P. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl Acad. Sci. USA 93, 7137–7142 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kelley, D. E., Stokes, D. G. & Perry, R. P. CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 108, 10–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Smolle, M. et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19, 884–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lusser, A., Urwin, D. L. & Kadonaga, J. T. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 12, 160–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Leonard, J. D. & Narlikar, G. J. A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler. Mol. Cell 57, 850–859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nodelman, I. M., Shen, Z., Levendosky, R. F. & Bowman, G. D. Autoinhibitory elements of the Chd1 remodeler block initiation of twist defects by destabilizing the ATPase motor on the nucleosome. Proc. Natl Acad. Sci. USA 118, e2014498118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Racki, L. R. et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462, 1016–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nodelman, I. M. et al. Interdomain communication of the Chd1 chromatin remodeler across the DNA gyres of the nucleosome. Mol. Cell 65, 447–459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sundaramoorthy, R. et al. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. eLife 7, e35720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Farnung, L., Ochmann, M. & Cramer, P. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. eLife 9, e56178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Delmas, V., Stokes, D. G. & Perry, R. P. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. Proc. Natl Acad. Sci. USA 90, 2414–2418 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McKnight, J. N., Jenkins, K. R., Nodelman, I. M., Escobar, T. & Bowman, G. D. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol. Cell. Biol. 31, 4746–4759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winger, J., Nodelman, I. M., Levendosky, R. F. & Bowman, G. D. A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA. eLife 7, e34100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nodelman, I. M. & Bowman, G. D. Biophysics of chromatin remodeling. Annu. Rev. Biophys. 50, 73–93 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, M. et al. Mechanism of DNA translocation underlying chromatin remodelling by Snf2. Nature 567, 409–413 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, L., Wu, H., Li, X., Gao, N. & Chen, Z. Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nat. Struct. Mol. Biol. 26, 258–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Chittori, S., Hong, J., Bai, Y. & Subramaniam, S. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome. Nucleic Acids Res. 47, 9400–9409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan, L. & Chen, Z. A unifying mechanism of DNA translocation underlying chromatin remodeling. Trends Biochem. Sci. 45, 217–227 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Farnung, L., Vos, S. M., Wigge, C. & Cramer, P. Nucleosome–Chd1 structure and implications for chromatin remodelling. Nature 550, 539–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Gu, M. & Rice, C. M. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc. Natl Acad. Sci. USA 107, 521–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, X. J., Shakked, Z. & Olson, W. K. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 300, 819–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ng, H. L., Kopka, M. L. & Dickerson, R. E. The structure of a stable intermediate in the A B DNA helix transition. Proc. Natl Acad. Sci. USA 97, 2035–2039 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lavery, R. & Zakrzewska, K. in Oxford Handbook of Nucleic Acid Structure (ed. Neidle, S.) 39–74 (Oxford Univ. Press, 1999).

  35. Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D. & Zakrzewska, K. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 37, 5917–5929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. El Hassan, M. A. & Calladine, C. R. Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Philos. Trans. Math. Phys. Eng. Sci. 355, 43–100 (1997).

    Article  CAS  Google Scholar 

  37. Olson, W. K. et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313, 229–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Marathe, A., Karandur, D. & Bansal, M. Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. BMC Struct. Biol. 9, 24 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tan, S. & Davey, C. A. Nucleosome structural studies. Curr. Opin. Struct. Biol. 21, 128–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Fairman-Williams, M. E., Guenther, U. P. & Jankowsky, E. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dürr, H., Korner, C., Muller, M., Hickmann, V. & Hopfner, K. P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005).

    Article  PubMed  Google Scholar 

  42. Liu, X. et al. Mechanism of chromatin remodelling revealed by the Snf2–nucleosome structure. Nature 544, 440–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Willhoft, O. et al. Structure and dynamics of the yeast SWR1-nucleosome complex. Science 362, eaat7716 (2018).

    Article  PubMed  Google Scholar 

  44. Armache, J. P. et al. Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. eLife 8, 46057 (2019).

    Article  Google Scholar 

  45. Hauk, G., McKnight, J. N., Nodelman, I. M. & Bowman, G. D. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 39, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levendosky, R. F. & Bowman, G. D. Asymmetry between the two acidic patches dictates the direction of nucleosome sliding by the ISWI chromatin remodeler. eLife 8, 45472 (2019).

    Article  Google Scholar 

  47. Skrajna, A. et al. Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Res. 48, 9415–9432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGinty, R. K. & Tan, S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 71, 16–26 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, E. et al. A novel N-terminal region to chromodomain in CHD7 is required for the efficient remodeling activity. J. Mol. Biol. 433, 167114 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Barbera, A. J. et al. The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311, 856–861 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife 7, 35322 (2018).

    Article  Google Scholar 

  52. Dao, H. T., Dul, B. E., Dann, G. P., Liszczak, G. P. & Muir, T. W. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat. Chem. Biol. 16, 134–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Deindl, S. et al. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152, 442–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhong, Y. et al. CHD4 slides nucleosomes by decoupling entry- and exit-side DNA translocation. Nat. Commun. 11, 1519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sabantsev, A., Levendosky, R. F., Zhuang, X., Bowman, G. D. & Deindl, S. Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling. Nat. Commun. 10, 1720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607–611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Warren, C. & Shechter, D. Fly fishing for histones: catch and release by histone chaperone intrinsically disordered regions and acidic stretches. J. Mol. Biol. 429, 2401–2426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou, K., Liu, Y. & Luger, K. Histone chaperone FACT FAcilitates Chromatin Transcription: mechanistic and structural insights. Curr. Opin. Struct. Biol. 65, 26–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Farnung, L., Ochmann, M., Engeholm, M. & Cramer, P. Structural basis of nucleosome transcription mediated by Chd1 and FACT. Nat. Struct. Mol. Biol. 28, 382–387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y. et al. FACT caught in the act of manipulating the nucleosome. Nature 577, 426–431 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Flaus, A., Martin, D. M., Barton, G. J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thomä, N. H. et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat. Struct. Mol. Biol. 12, 350–356 (2005).

    Article  PubMed  Google Scholar 

  63. Bullock, J. M. A., Schwab, J., Thalassinos, K. & Topf, M. The importance of non-accessible crosslinks and solvent accessible surface distance in modeling proteins with restraints from crosslinking mass spectrometry. Mol. Cell. Proteom. 15, 2491–2500 (2016).

    Article  CAS  Google Scholar 

  64. Lu, X. J. & Olson, W. K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Nodelman, I. M., Patel, A., Levendosky, R. F. & Bowman, G. D. Reconstitution and purification of nucleosomes with recombinant histones and purified DNA. Curr. Protoc. Mol. Biol. 133, e130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zivanov, J. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, 42166 (2018).

    Article  Google Scholar 

  75. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vasudevan, D., Chua, E. Y. D. & Davey, C. A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 403, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Iacobucci, C. et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions. Nat. Protoc. 13, 2864–2889 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Götze, M. et al. StavroX—a software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass Spectrom. 23, 76–87 (2012).

    Article  PubMed  Google Scholar 

  86. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kahraman, A. et al. Cross-link guided molecular modeling with ROSETTA. PLoS ONE 8, e73411 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Levendosky for Snf2h protein, K. Tripp and the Center for Molecular Biophysics at Johns Hopkins for fluorometer use, and C. Bator at the Huck Institutes of the Life Sciences Cryo-Electron Microscopy Facility for the initial cryo-EM data collection. We thank S. Abini-Agbomson for his help in setting up and troubleshooting the GraFix procedure, and U. Baxa and A. Wier for their support and data collection at the Frederick National Laboratory. This work was supported by NIH grants R01-GM084192 (G.D.B.) and DP2-GM140926 (S.D.F.). This research was also supported, in part, by the National Cancer Institute’s National Cryo-EM Facility at the Frederick National Laboratory for Cancer Research under contract no. HSSN261200800001E.

Author information

Authors and Affiliations

Authors

Contributions

I.M.N., G.D.B. and J.-P.A. conceived the project. I.M.N. produced all nucleosomes and Chd1 variants. S.D. performed GraFix for cryo-EM. J.-P.A. processed and analyzed cryo-EM data. Atomic models were built by J.-P.A., with contributions from G.D.B. J.-P.A., G.D.B. and I.M.N. analyzed the structures. S.D.F. and A.M.F. performed and analyzed MS experiments. I.M.N. and G.D.B. performed and analyzed biochemical experiments and wrote the paper. All authors contributed figures and edited and approved the manuscript.

Corresponding authors

Correspondence to Gregory D. Bowman or Jean-Paul Armache.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Tom Owen-Hughes, Sebastian Eustermann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Anke Sparmann, Carolina Perdigoto and Sara Osman were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM raw data and analysis of the 2.3 Å Chd1-nucleosome complex.

a, Representative cryo-EM micrographs of Chd1-nucleosome complex. b, Selected 2D class averages generated from the particles used to reconstruct the Chd1-nucleosome complex. c, Four orthogonal views of the 2.3 Å structure. Coloring of nucleosome and Chd1 domains is according to Fig. 1. d, Euler angle distribution of all the particles used in the 2.3 Å 3D reconstruction. The distribution of particles in a specific orientation is proportional to the length of each cylinder. e, The final 2.3 Å reconstruction of the Chd1-nucleosome complex colored according to local resolution with blue and red representing the highest and lowest resolution, respectively. f, Four orthogonal views of the Chd1 ATPase and chromodomains from the 2.3 Å reconstruction, without the nucleosome density, colored according to local resolution. g, FSC curve calculated between two independent half-maps from refinements in CryoSPARC (2.3 Å, blue) and Relion (2.4 Å, purple) reported at 0.143 FSC cutoff. The Relion and CryoSPARC refinements were independent from each other. Arrows indicate the reported resolutions in Ångstroms.

Extended Data Fig. 2 Views of 2.3 Å resolution density maps of the Chd1-nucleosome complex.

The coloring of the figure follows that from Fig. 1 (guide DNA strand, yellow; tracking DNA strand, orange; ChEx, magenta; double chromodomains, light blue; ATPase lobe 1, purple; ATPase lobe 2, blue). a-f, Selected views of Chd1-ATPase interactions with DNA. g,h, Views of the DNA duplex at SHL2 and SHL3.

Extended Data Fig. 3 Overview of 3D classification and reconstruction of the Chd1-nucleosome complex dataset.

Flowchart of data processing, refinement, and classification towards the final reconstructions of Chd1-nucleosome dataset (left). Single asterisk marks the bifurcation where particles were classified according to presence of the DNA-binding domain (bottom right). Double asterisk marks the classification of the nucleosome alone or nucleosome with only ChEx (top right). Triple asterisk marks the classification for the ‘bridge’ region connecting the brace helix and the DBD. Darker squares report significant reconstructions.

Extended Data Fig. 4 Cryo-EM analysis of nucleosome-bound Chd1 with defined DBD, nucleosome-only and nucleosome-ChEx subsets.

a, Selected 2D class averages generated from the particles used to reconstruct the Chd1-nucleosome complex at 2.7 Å with the well-defined DNA-binding domain. b, Four orthogonal views of the 2.7 Å structure containing the well-defined DNA-binding domain. Coloring of nucleosome and Chd1 domains is done according to Fig. 1. c, Euler angle distribution of all the particles used in the 2.7 Å 3D reconstruction. d, The final 2.7 Å map of the Chd1-nucleosome complex colored according to local resolution; blue represents the highest resolution and red the lowest. e, Selected 2D class averages generated from the particles used to obtain the nucleosome-only reconstruction at 2.6 Å. f, Four orthogonal views of the 2.6 Å structure of the nucleosome. g, Euler angle distribution of all the particles used in the 2.6 Å 3D reconstruction. h, The final 2.6 Å nucleosome reconstruction colored according to local resolution; blue represents the highest resolution and red the lowest. i, Selected 2D class averages generated from the particles used to reconstruct the nucleosome-bound ChEx at 2.9 Å. j, Four orthogonal views of the 2.9 Å structure of ChEx bound to the nucleosome. Coloring of the nucleosome and ChEx is done according to Fig. 1. k, Euler angle distribution of all the particles used in the 2.9 Å 3D reconstruction. l, The final 2.9 Å reconstruction of the nucleosome-bound ChEx colored according to local resolution; blue represents the highest resolution and red the lowest. m, n, o, FSC curves were calculated between two independently refined half-maps, before (red) and after (blue) masking, and reported at 0.143 FSC cutoff. Shown are the curves for the nucleosome-Chd1 complex with well-defined DBD (2.7 Å, m), the nucleosome alone (2.6 Å, n), and nucleosome with ChEx only (2.9 Å, o). Arrows indicate the reported resolutions in Ångstroms.

Extended Data Fig. 5 Nucleosome-Chd1 complexes in the absence of nucleotide are more resistant to competitor DNA when the 601[TA-rich + 1] sequence is used.

a, 40-601-40 nucleosomes (30 nM) were preincubated with 120 nM Chd1 in the presence or absence of ATP𝛄S for 15 min at room temperature, with or without salmon sperm DNA. Reactions were separated on 4.25% native acrylamide gels. Shown are representative gels. b, Quantification of nucleosome binding in the presence of competitor. Fits to averaged data points gave apparent Kd values of 0.43 ± 0.15 mg ml −1 and 0.11 ± 0.05 mg ml −1 for nucleotide-free Chd1[wt] for 601[TArich +1] and 601[canonical], respectively, and 0.11 ± 0.05 mg ml −1 and 0.07 ± 0.04 mg ml −1 for ATP𝛄S-bound Chd1[wt] for 601[TArich +1] and 601[canonical], respectively. Data shown are averages of six replicates. Error bars represent standard deviations.

Source data

Extended Data Fig. 6 DNA parameters.

Shown are DNA parameters calculated with (a) CURVES + 35 and (b) 3DNA64, with the X-axes indicating the distance from the dyad. For the Chd1-bound structure in the nucleotide-free state, yellow bars represent the Chd1-bound (TA-rich) side and gray bars represent the unbound (TA-poor) side, and brown indicates overlap of the bars. For the 601 sequences, solid lines show parameter values for the TA-rich sides and dotted lines show those of the TA-poor sides.

Extended Data Fig. 7 Absorption of single nucleotides on the nucleosome.

Shown are crystal and cryo-EM structures of the nucleosome, aligned based on the histone core. Each view shows the DNA minor groove facing away from the histone core. Note that in each case, the bulging strand, which remains base-paired, contains an additional nucleotide.

Extended Data Fig. 8 Variability in density for the Chd1 DNA-binding domain, exit DNA, and the bridge.

a, Overview of a filtered Chd1-nucleosome reconstruction where the DNA-binding domain is well-defined. b, Zoomed-in views showing different sub-classes obtained from the dataset, exhibiting variability in the exit DNA and the DNA-binding domain. c-f, Visualization of variability of the connection (‘bridge’) between the brace helix and the DNA-binding domain. c, Model of the nucleosome-bound Chd1. d, Model of the nucleosome-bound Chd1 model converted into a map, filtered to 10 Å. e, Separated unmodeled density (purple) from the 2.3 Å Coulomb potential density reconstruction as shown against the map from d. f, Unmodeled densities (various colors) from subsets obtained using focused classification, shown against the map from d.

Extended Data Fig. 9 Nucleosome sliding assays of Chd1 variants.

a, Overview of the Chd1-nucleosome complex, highlighting the opposite-gyre DNA interacting loop (residues 475-481), a loop on the chromodomains that contacts the DNA-binding domain (residues 295-302), and conserved residues on the DNA-binding domain that contact the chromodomains (residues 1199-1202). b, Quantification of nucleosome sliding reactions. Sliding reactions were carried out at room temperature with 200 nM Chd1 and 40 nM FAM-80-601-0 nucleosomes. In the top graphs, data are presented as mean values ± SD, with lines showing the fit to the averaged data at each time point. Each variant was measured in multiple independent experiments: Chd1[wt] (n = 11); Chd1[K478D/G479A/K480D/K481A] (n = 6); Chd1[∆475-481] (n = 8); Chd1[∆296-302] (n = 7); Chd1[D1033A/E1034A/D1038A] (n = 6); Chd1[R1199A/D1200A] (n = 6); Chd1[D1201A/P1202A] (n = 5). The bar graph shows mean sliding rates ± SD, calculated from individual fits. For comparison of rates to Chd1[wt], a two-tailed t-test yielded the following p values: Chd1[K478D/G479A/K480D/K481A] (p = 2.5×10−6); Chd1[∆475-481] (p = 7.6×10−12); Chd1[∆296-302] (p = 0.29); Chd1[D1033A/E1034A/D1038A] (p = 9.0×10−4); Chd1[R1199A/D1200A] (p = 8.1×10−3); Chd1[D1201A/P1202A] (p = 0.022).

Extended Data Fig. 10 The Chd1 ChEx segment, devoid of secondary structure, lays over the histone surface similarly to extended peptide segments of histone chaperones.

a, Interactions of ChEx region with histone core. The main chain amide of T125 hydrogen bonds to the C-terminal end of alpha helix 1 of H2B. Neighboring this region are interactions with the acidic patch: R126 ChEx hydrogen bonds with E56 of H2A, and the arginine anchor, R130, hydrogen bonds with residues in the canonical acidic patch binding pocket (E61, D90, E92). Adjacent to the acidic pocket, the conserved Y137 of ChEx packs against a hydrophobic surface of H2A, consisting of L65, A69, L85, and A86. The aromatic ring of Y137 is protected from solvent by V135 of ChEx. Several side chain/main chain hydrogen bonds are formed between H2A and ChEx around Y137: the backbone of Y137 hydrogen bonds with side chains of H2A D72 and N73; the backbone amide of I139 hydrogen bonds with the H2A N73 side chain; and the side chain of ChEx N138 hydrogen bonds with the backbone carbonyl of H2A D72. A second tyrosine (Y141) of ChEx packs against the aliphatic regions of side chains of R52 and K56 of the αN helix of H3. At the C-terminal end of ChEx, a group of acidic residues interacts with a cluster of basic residues on H3 (R42, R52, and K56). ChEx residues are labeled in magenta, and hydrogen bonds 3.2 Å or less and 3.3–3.5 Å are shown as green dashes or yellow dots, respectively. b, Comparison of nucleosome-binding footprints of the Chd1 ChEx segment with the C-terminal domain (CTD) of the FACT subunit Spt16. The FACT structure (6UPK) was aligned with the Chd1-nucleosome structure by superimposing the bound H2A-H2B dimers of each structure. With this alignment, the Spt16 CTD clashes with ChEx at the H3 binding interface and with the DNA at SHL4.5.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Table 1.

Reporting Summary

Supplementary Data 1

Crosslinking MS data for the Chd1–nucleosome complex.

Supplementary Video 1

Overview of two cryo-EM structures of the Chd1–nucleosome complex in the nucleotide-free state. The maps resolved at 2.3 Å resolution had poor density for exit DNA and the DNA-binding domain. The maps at 2.7 Å resolution resulted from focused subclassification for the DNA-binding domain, which also shows stronger density for exit DNA.

Supplementary Video 2

A tour of the interface between the Chd1 ATPase motor and nucleosomal DNA at SHL2. The electron density, shown as a mesh, is from a 2.3 Å cryo-EM map.

Supplementary Video 3

Comparison of the nucleotide-free Chd1–nucleosome structure to other remodeler–nucleosome complexes. All structures shown here were nucleotide-free or ADP-bound, with a similar ‘open’ ATPase conformation.

Supplementary Video 4

Morphing video illustrating the relative changes in the nucleosomal DNA upon binding of Chd1 in the nucleotide-free state. See also Fig. 2.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nodelman, I.M., Das, S., Faustino, A.M. et al. Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state. Nat Struct Mol Biol 29, 121–129 (2022). https://doi.org/10.1038/s41594-021-00719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00719-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing