Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the ISW1a complex bound to the dinucleosome

Abstract

Nucleosomes are basic repeating units of chromatin and form regularly spaced arrays in cells. Chromatin remodelers alter the positions of nucleosomes and are vital in regulating chromatin organization and gene expression. Here we report the cryo-EM structure of chromatin remodeler ISW1a complex from Saccharomyces cerevisiae bound to the dinucleosome. Each subunit of the complex recognizes a different nucleosome. The motor subunit binds to the mobile nucleosome and recognizes the acidic patch through two arginine residues, while the DNA-binding module interacts with the entry DNA at the nucleosome edge. This nucleosome-binding mode provides the structural basis for linker DNA sensing of the motor. Notably, the Ioc3 subunit recognizes the disk face of the adjacent nucleosome through interacting with the H4 tail, the acidic patch and the nucleosomal DNA, which plays a role in the spacing activity in vitro and in nucleosome organization and cell fitness in vivo. Together, these findings support the nucleosome spacing activity of ISW1a and add a new mode of nucleosome remodeling in the context of a chromatin environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of the ISW1a complex bound to the dinucleosome.
Fig. 2: Structure of the ISW1a complex bound to the N1 nucleosome.
Fig. 3: Structure of Ioc3 bound to the N2 nucleosome.
Fig. 4: Nucleosome recognition by Ioc3 is important for nucleosome spacing in vitro.
Fig. 5: Recognition of the N2 nucleosome by Ioc3 plays a role in the functions of the ISW1a complex in cells.
Fig. 6: Model of ISW1a action and the antagonism with RSC in the organization of promoter nucleosomes.

Similar content being viewed by others

Data availability

Coordinates and EM maps have been deposited in the EMDataResource and PDB under accession codes EMD-32992 (PDB 7X3T, ISW1a-diNCP); EMD-32995 (PDB 7X3W, N1-motor); EMD-32996 (PDB 7X3X, N1-RA) and EMD-32994 (PDB 7X3V, N2-Ioc3). MNase-seq datasets are available in the National Center for Biotechnology Information Gene Expression Omnibus repository (GSE240192). Source data are provided with this paper.

Code availability

Scripts to analyze MNase-seq data have been deposited at GitHub (https://github.com/siayouyang/MNase-seq_analysis_workflow).

References

  1. Baldi, S., Korber, P. & Becker, P. B. Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat. Struct. Mol. Biol. 27, 109–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lai, B. et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 562, 281–285 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Bai, L. & Morozov, A. V. Gene regulation by nucleosome positioning. Trends Genet. 26, 476–483 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prajapati, H. K., Ocampo, J. & Clark, D. J. Interplay among ATP-dependent chromatin remodelers determines chromatin organisation in yeast. Biology https://doi.org/10.3390/biology9080190 (2020).

  7. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan, L. & Chen, Z. A unifying mechanism of DNA translocation underlying chromatin remodeling. Trends Biochem. Sci. 45, 217–227 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Wiechens, N. et al. The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet. 12, e1005940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barisic, D., Stadler, M. B., Iurlaro, M. & Schubeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Morillon, A. et al. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115, 425–435 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Parnell, T. J., Schlichter, A., Wilson, B. G. & Cairns, B. R. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. eLife 4, e06073 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709–721 e712 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada, K. et al. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472, 448–453 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Vary, J. C. Jr. et al. Yeast Isw1p forms two separable complexes in vivo. Mol. Cell. Biol. 23, 80–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Moreau, J. L. et al. Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Mol. Cell 11, 1609–1620 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Yen, K., Vinayachandran, V., Batta, K., Koerber, R. T. & Pugh, B. F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149, 1461–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eriksson, P. R. & Clark, D. J. The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution. Sci. Rep. 11, 4195 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686–697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Gangaraju, V. K. & Bartholomew, B. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol. Cell. Biol. 27, 3217–3225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krajewski, W. A. Yeast Isw1a and Isw1b exhibit similar nucleosome mobilization capacities for mononucleosomes, but differently mobilize dinucleosome templates. Arch. Biochem. Biophys. 546, 72–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Bhardwaj, S. K. et al. Dinucleosome specificity and allosteric switch of the ISW1a ATP-dependent chromatin remodeler in transcription regulation. Nat. Commun. 11, 5913 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Yan, L., Wang, L., Tian, Y., Xia, X. & Chen, Z. Structure and regulation of the chromatin remodeller ISWI. Nature 540, 466–469 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Dao, H. T., Dul, B. E., Dann, G. P., Liszczak, G. P. & Muir, T. W. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat. Chem. Biol. 16, 134–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Yan, L., Wu, H., Li, X., Gao, N. & Chen, Z. Structures of the ISWI-nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nat. Struct. Mol. Biol. 26, 258–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Chittori, S., Hong, J., Bai, Y. & Subramaniam, S. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome. Nucleic Acids Res. 47, 9400–9409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Armache, J. P. et al. Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. eLife https://doi.org/10.7554/eLife.46057 (2019).

  33. Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res. 44, 4625–4635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schalch, T., Duda, S., Sargent, D. F. & Richmond, T. J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Adhireksan, Z., Sharma, D., Lee, P. L. & Davey, C. A. Near-atomic resolution structures of interdigitated nucleosome fibres. Nat. Commun. 11, 4747 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607–611 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife https://doi.org/10.7554/eLife.35322 (2018).

  38. Levendosky, R. F. & Bowman, G. D. Asymmetry between the two acidic patches dictates the direction of nucleosome sliding by the ISWI chromatin remodeler. eLife https://doi.org/10.7554/eLife.45472 (2019).

  39. McGinty, R. K. & Tan, S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 71, 16–26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wagner, F. R. et al. Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 579, 448–451 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. He, Z., Chen, K., Ye, Y. & Chen, Z. Structure of the SWI/SNF complex bound to the nucleosome and insights into the functional modularity. Cell Discov. 7, 28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Babour, A. et al. The chromatin remodeler ISW1 is a quality control factor that surveys nuclear mRNP biogenesis. Cell 167, 1201–1214 e1215 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Ye, Y. et al. Structure of the RSC complex bound to the nucleosome. Science 366, 838–843 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Meth. Enzymol. 375, 23–44 (2004).

    Article  CAS  Google Scholar 

  48. Liu, X., Li, M., Xia, X., Li, X. & Chen, Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544, 440–445 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383.e313 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Rodriguez, J., McKnight, J. N. & Tsukiyama, T. Genome-wide analysis of nucleosome positions, occupancy, and accessibility in yeast: nucleosome mapping, high-resolution histone ChIP, and NCAM. Curr. Protoc. Mol. Biol. 108, 21.28.1–21.28.16 (2014).

    Article  PubMed  Google Scholar 

  55. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gossett, A. J. & Lieb, J. D. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet. 8, e1002771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Albert, I., Wachi, S., Jiang, C. & Pugh, B. F. GeneTrack–a genomic data processing and visualization framework. Bioinformatics 24, 1305–1306 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Hariharan, V. & Hancock, W. O. Insights into the mechanical properties of the kinesin neck linker domain from sequence analysis and molecular dynamics simulations. Cell. Mol. Bioeng. 2, 177–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Nagy, A. et al. Hierarchical extensibility in the PEVK domain of skeletal-muscle titin. Biophys. J. 89, 329–336 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Tsinghua University Branch of the China National Center for Protein Sciences (Beijing) for the cryo-EM facility (crosslinked dataset) and the computational facility support on the cluster of Bio-Computing Platform. This work was supported by the National Key Research and Development Program (grant nos. 2022YFA1302700 and 2019YFA0508902 to Z.C.), the National Natural Science Foundation of China (grant nos. 32130016 and 31825016 to Z.C.), Beijing Frontier Research Center for Biological Structure and Tsinghua–Peking Joint Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

L.L. prepared the sample and performed the biochemical analysis. K.C. performed the EM analysis. Y.S. and P.H. prepared MNase-seq samples and performed MNase-seq analysis. Y.Y. conducted the yeast genetics assays. Z.C. wrote the manuscript with help from all authors. Z.C. directed and supervised all the research.

Corresponding author

Correspondence to Zhucheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Sara Osman, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CryoEM analysis of the Isw1a-dinucleosome complex.

(a) Representative negative stain images, (b) cryoEM images, and (c) 2D classification of the ISW1a complex bound to the dinucloesome. (d) Flowchart of the cryo-EM data processing. (e) Angular distributions of cryo-EM particles in the final round of refinement of the masked dataset. (f) Gold standard Fourier shell correlation (FSC) curves, showing the resolutions of 5.4 Å, 3.2 Å, 2.9 Å, 3.1 Å and 3.1 Å for the ISW1a-dinucleosome complex, N1 (bound with arginine anchors, RAs), N2 (bound with the Finger helix, FH), N1-motor, and N2-Ioc3, respectively.

Extended Data Fig. 2 Local density maps of the Isw1a-dinucleosome complex.

(a) nucleosomal DNA; (b) H2A-H2B of the N1 nucleosome; (c) H2A-H2B of the N2 nucleosome; (d) motor domain of Isw1; (e) HSS domain of Isw1 (f) the CLB domain of Ioc3 and (g) HLB domain of Ioc3.

Extended Data Fig. 3 Comparison of the structures of the dinucleosomes.

The structures of the histone cores are omitted for clarity, and the first histone cores are aligned. The structure determined in this study is in light brown, and PBD codes 1zbb (20 bp linker DNA)1, 6la8 (29 bp linker DNA)2 and 6m44 (31 bp linker DNA)2 in cyan, blue and green, respectively.

Extended Data Fig. 4 Additional biochemical analyses of the Isw1a complex.

(a) The ISW1a complex slides the closely packed 50N15N50 dinucleosome to more evenly spaced positions. This experiment was repeated independently for three times.The dinucleosomes 38N38N39 (evenly spaced nucleosomes, lane 1) and 32N33N50 (one nucleosome moved, lane 2) showed similar migration patterns as those of the ISW1a-remodeling products B2 and B3, respectively. (bd) the chromatin remodeling activities of the WT and indicated mutant ISW1a complex towards the nucleosome substrates 50N15N50 (b), 0N80 (c), and 10N10N60 (d). Representative gels are shown. Quantification of the initial substrates remodeled are shown on the right in (b) and (c); quantification of the initial substrate (B1) and final product (B4) are shown in the middle and right panels of (d), respectively. Error bars indicate SD of the mean(n = 3).

Source data

Extended Data Fig. 5 Tension estimation imposed on NegC of Isw1.

(a) The distance between the RA and the motor domain of Isw1 through a disordered NegC domain as reported in current study. The NegC connects the C-terminus of the motor domain with the RA motif, spanning a distance 74 Å through a disordered sequence of 108 aa (residues 657–764). (b) The distance between the RA and the motor domain of Isw1 through the fully folded NegC domain as predicted by AlphaFold (ID: AF-P38144-F1). The distance is 47 Å through a disordered sequence of 24 aa (residues 741–764). (c) Tension estimated by the worm-like-chain model imposed on the disordered sequence of the melted (back line) and folded (red line) NegC. Assuming the persistent length of 1 nm for the polypeptide, the tensions are estimated to be 1 pN and 6 pN for the melted and folded NegC, respectively.

Extended Data Fig. 6 Interaction between the HLB domain of Ioc3 and the DNA.

(a) Structural comparison of the HSS-Ioc3 DNA-binding module bound to the dinucleosome (color coded) and the free DNA (colored grey, PDB code 2Y9Z)3. The structures of Ioc3 are aligned. (b) Interaction between the HLB domain and the DNA. The electrostatic potential of the HLB domain is calculated by Pymol.

Extended Data Fig. 7 Comparison of the Finger Helix-nucleosome interaction.

The structures of Finger Helices of Ioc3 (colored violet), Snf5 (PDB code 7egp, colored yellow)4, Sfh1 (PDB code 5tda, colored cyan)5, and SMARCB1 (PDB code 6ltj, colored green)6 are aligned. The electrostatic potentials of the H2A-H2B are calculated by Pymol.

Extended Data Fig. 8 Additional analysis of the nucleosome organization of the WT and Ioc3 mutant yeast cells.

To ensure the data quality, three independent datasets are measured, and each dataset includes three biological replicates of the WT samples, and one set of the Ioc3 mutants. (a, b) Nucleosome shift analysis of dataset1 derived from the 1108 overlapping genes in the Venn diagram of Fig. 5b. (a) Histograms of the number of genes having a given nucleosome shift (1-bp bins). (b) List of median shifts of the +1 to +4 promoter nucleosomes of the 1108 overlapping genes. The shifts of one of the WT cells are used as control for Wilcoxon-Mann-Whitney test shown as heat-map in Fig. 5d. (ce) Nucleosome shift analysis of dataset2. All genes with at least one significantly shifted promoter nucleosomes are included. (c) Histograms of the number of genes having a given nucleosome shift (1-bp bins). (d) List of median shifts of the +1 to +4 promoter nucleosomes. The shifts of one of the WT cells are used as control for two-sided Wilcoxon-Mann-Whitney test shown as heat-map in (e). (fh) Equivalent plots for dataset3.

Extended Data Fig. 9 Four specific loci with shifted nucleosomes.

(a) Smoothed dyad density showing downstream shifting of the promoter nucleosomes detected in three independent datasets. (b) Raw dyad density of the RAD53 promoter nucleosomes without gaussian smoothing (black bars).

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, K., Sia, Y. et al. Structure of the ISW1a complex bound to the dinucleosome. Nat Struct Mol Biol 31, 266–274 (2024). https://doi.org/10.1038/s41594-023-01174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01174-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing