Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of the complete poxvirus transcription initiation process

Abstract

Poxviruses express their genes in the cytoplasm of infected cells using a virus-encoded multi-subunit polymerase (vRNAP) and unique transcription factors. We present cryo-EM structures that uncover the complete transcription initiation phase of the poxvirus vaccinia. In the pre-initiation complex, the heterodimeric early transcription factor VETFs/l adopts an arc-like shape spanning the polymerase cleft and anchoring upstream and downstream promoter elements. VETFI emerges as a TBP-like protein that inserts asymmetrically into the DNA major groove, triggers DNA melting, ensures promoter recognition and enforces transcription directionality. The helicase VETFs fosters promoter melting and the phospho-peptide domain (PPD) of vRNAP subunit Rpo30 enables transcription initiation. An unprecedented upstream promoter scrunching mechanism assisted by the helicase NPH-I probably fosters promoter escape and transition into elongation. Our structures shed light on unique mechanisms of poxviral gene expression and aid the understanding of thus far unexplained universal principles in transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the vaccinia PIC.
Fig. 2: Structure of the VETF heterodimer.
Fig. 3: Comparison of the TBP-like domain from vaccinia VETFl with yTBP.
Fig. 4: Structure of the late PIC.
Fig. 5: Three structures of initially transcribing complexes.
Fig. 6: Structure of the lITC.
Fig. 7: Transition of complete vRNAP to the PIC, and a model for early promoter recognition and opening.

Similar content being viewed by others

Data availability

Crystallographic structure factors and atomic coordinates have been deposited in the Protein Data Bank (PDB) under accession nos. 7AMV, 7AOF, 7AOZ, 7AP8, 7AP9 and 7AOH. Cryo-EM maps have been deposited with the Electron Microscopy Data Bank (EMDB) under accession nos. EMD-11824, EMD-11843, EMD-11848, EMD-11850, EMD-11851 and EMD-11844. Source data are provided with this paper.

References

  1. Werner, F. & Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9, 85–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Hernandez, N. TBP, a universal eukaryotic transcription factor? Genes Dev. 7, 1291–1308 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, X., Bushnell, D. A., Wang, D., Calero, G. & Kornberg, R. D. Structure of an RNA polymerase II–TFIIB complex and the transcription initiation mechanism. Science 327, 206–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Kostrewa, D. et al. RNA polymerase II–TFIIB structure and mechanism of transcription initiation. Nature 462, 323–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Revyakin, A., Liu, C., Ebright, R. H. & Strick, T. R. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314, 1139–1143 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kapanidis, A. N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brieba, L. G. & Sousa, R. T7 promoter release mediated by DNA scrunching. EMBO J. 20, 6826–6835 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheetham, G. M. & Steitz, T. A. Structure of a transcribing T7 RNA polymerase initiation complex. Science 286, 2305–2309 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Henderson, K. L. et al. Mechanism of transcription initiation and promoter escape by E. coli RNA polymerase. Proc. Natl Acad. Sci. USA 114, E3032–E3040 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Winkelman, J. T. et al. Multiplexed protein-DNA cross-linking: scrunching in transcription start site selection. Science 351, 1090–1093 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roberts, J. W. Biochemistry. RNA polymerase, a scrunching machine. Science 314, 1097–1098 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Shchelkunov, S. N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 9, e1003756 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lewis-Jones, S. Zoonotic poxvirus infections in humans. Curr. Opin. Infect. Dis. 17, 81–89 (2004).

    Article  PubMed  Google Scholar 

  14. Grant, R., Nguyen, L. L. & Breban, R. Modelling human-to-human transmission of monkeypox. Bull. World Health Organ. 98, 638–640 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rohrmann, G., Yuen, L. & Moss, B. Transcription of vaccinia virus early genes by enzymes isolated from vaccinia virions terminates downstream of a regulatory sequence. Cell 46, 1029–1035 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Broyles, S. S. & Moss, B. Homology between RNA polymerases of poxviruses, prokaryotes and eukaryotes: nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits. Proc. Natl Acad. Sci. USA 83, 3141–3145 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ensinger, M. J., Martin, S. A., Paoletti, E. & Moss, B. Modification of the 5′-terminus of mRNA by soluble guanylyl and methyl transferases from vaccinia virus. Proc. Natl Acad. Sci. USA 72, 2525–2529 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broyles, S. S., Yuen, L., Shuman, S. & Moss, B. Purification of a factor required for transcription of vaccinia virus early genes. J. Biol. Chem. 263, 10754–10760 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Yuen, L., Davison, A. J. & Moss, B. Early promoter-binding factor from vaccinia virions. Proc. Natl Acad. Sci. USA 84, 6069–6073 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hillen, H. S. et al. Structural basis of poxvirus transcription: transcribing and capping vaccinia complexes. Cell 179, 1525–1536 e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Grimm, C. et al. Structural basis of poxvirus transcription: vaccinia RNA polymerase complexes. Cell 179, 1537–1550 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Gershon, P. D. & Moss, B. Early transcription factor subunits are encoded by vaccinia virus late genes. Proc. Natl Acad. Sci. USA 87, 4401–4405 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niles, E. G., Lee-Chen, G. J., Shuman, S., Moss, B. & Broyles, S. S. Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. Virology 172, 513–522 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Shuman, S., Broyles, S. S. & Moss, B. Purification and characterization of a transcription termination factor from vaccinia virions. J. Biol. Chem. 262, 12372–12380 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Broyles, S. S. & Moss, B. Sedimentation of an RNA polymerase complex from vaccinia virus that specifically initiates and terminates transcription. Mol. Cell. Biol. 7, 7–14 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahn, B. Y., Gershon, P. D. & Moss, B. RNA polymerase-associated protein Rap94 confers promoter specificity for initiating transcription of vaccinia virus early stage genes. J. Biol. Chem. 269, 7552–7557 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Ahn, B. Y. & Moss, B. RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. Proc. Natl Acad. Sci. USA 89, 3536–3540 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, Y., Ahn, B. Y. & Moss, B. Targeting of a multicomponent transcription apparatus into assembling vaccinia virus particles requires RAP94, an RNA polymerase-associated protein. J. Virol. 68, 1360–1370 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shuman, S. & Hurwitz, J. Mechanism of mRNA capping by vaccinia virus guanylyltransferase: characterization of an enzyme–guanylate intermediate. Proc. Natl Acad. Sci. USA 78, 187–191 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paoletti, E. & Moss, B. Two nucleic acid-dependent nucleoside triphosphate phosphohydrolases from vaccinia virus. Nucleotide substrate and polynucleotide cofactor specificities. J. Biol. Chem. 249, 3281–3286 (1974).

    Article  CAS  PubMed  Google Scholar 

  31. Davison, A. J. & Moss, B. Structure of vaccinia virus early promoters. J. Mol. Biol. 210, 749–769 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Cassetti, M. A. & Moss, B. Interaction of the 82-kDa subunit of the vaccinia virus early transcription factor heterodimer with the promoter core sequence directs downstream DNA binding of the 70-kDa subunit. Proc. Natl Acad. Sci. USA 93, 7540–7545 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baldick, C. J. Jr, Cassetti, M. C., Harris, N. & Moss, B. Ordered assembly of a functional preinitiation transcription complex, containing vaccinia virus early transcription factor and RNA polymerase, on an immobilized template. J. Virol. 68, 6052–6056 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Broyles, S. S. & Moss, B. DNA-dependent ATPase activity associated with vaccinia virus early transcription factor. J. Biol. Chem. 263, 10761–10765 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Eustermann, S. et al. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556, 386–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kitano, K., Kim, S. Y. & Hakoshima, T. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 18, 177–187 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, Z., Bruno, D. P., Martens, C. A., Porcella, S. F. & Moss, B. Genome-wide analysis of the 5′ and 3′ ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. J. Virol. 85, 5897–5909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krissinel, E. Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem. 1, 76–85 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. Nikolov, D. B. & Burley, S. K. 2.1 Å resolution refined structure of a TATA box-binding protein (TBP). Nat. Struct. Biol. 1, 621–637 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, J. L. & Burley, S. K. 1.9 Å resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nat. Struct. Biol. 1, 638–653 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, J. L., Nikolov, D. B. & Burley, S. K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Blombach, F. & Grohmann, D. Same same but different: the evolution of TBP in archaea and their eukaryotic offspring. Transcription 8, 162–168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hobbs, N. K., Bondareva, A. A., Barnett, S., Capecchi, M. R. & Schmidt, E. E. Removing the vertebrate-specific TBP N terminus disrupts placental beta2m-dependent interactions with the maternal immune system. Cell 110, 43–54 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Broyles, S. S., Li, J. & Moss, B. Promoter DNA contacts made by the vaccinia virus early transcription factor. J. Biol. Chem. 266, 15539–15544 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Senkevich, T. G., White, C. L., Koonin, E. V. & Moss, B. Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc. Natl Acad. Sci. USA 99, 6667–6672 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Struhl, K. Duality of TBP, the universal transcription factor. Science 263, 1103–1104 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Kamenova, I., Warfield, L. & Hahn, S. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription. Mol. Cell. Biol. 34, 2929–2943 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao, X., Schramm, L., Hernandez, N. & Herr, W. A shared surface of TBP directs RNA polymerase II and III transcription via association with different TFIIB family members. Mol. Cell 11, 151–161 (2003).

    Article  PubMed  Google Scholar 

  51. Bric, A., Radebaugh, C. A. & Paule, M. R. Photocross-linking of the RNA polymerase I preinitiation and immediate postinitiation complexes: implications for promoter recruitment. J. Biol. Chem. 279, 31259–31267 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Ravarani, C. N. J. et al. Molecular determinants underlying functional innovations of TBP and their impact on transcription initiation. Nat. Commun. 11, 2384 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kramm, K., Engel, C. & Grohmann, D. Transcription initiation factor TBP: old friend new questions. Biochem. Soc. Trans. 47, 411–423 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, X. et al. Structural insights into preinitiation complex assembly on core promoters. Science 372, eaba8490 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Dienemann, C., Schwalb, B., Schilbach, S. & Cramer, P. Promoter distortion and opening in the RNA polymerase II cleft. Mol. Cell 73, 97–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Murakami, K. et al. Uncoupling promoter opening from start-site scanning. Mol. Cell 59, 133–138 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feklistov, A. et al. RNA polymerase motions during promoter melting. Science 356, 863–866 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schilbach, S. et al. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 551, 204–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kolesnikova, O., Radu, L. & Poterszman, A. TFIIH: a multi-subunit complex at the cross-roads of transcription and DNA repair. Adv. Protein Chem. Struct. Biol. 115, 21–67 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Cheung, A. C. & Cramer, P. A movie of RNA polymerase II transcription. Cell 149, 1431–1437 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Hindman, R. & Gollnick, P. Nucleoside triphosphate phosphohydrolase I (NPH I) functions as a 5′ to 3′ translocase in transcription termination of vaccinia early genes. J. Biol. Chem. 291, 14826–14838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Deng, L. & Shuman, S. Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev. 12, 538–546 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, Z. & Moss, B. Interaction of the vaccinia virus RNA polymerase-associated 94-kilodalton protein with the early transcription factor. J. Virol. 83, 12018–12026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tan, S., Hunziker, Y., Sargent, D. F. & Richmond, T. J. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381, 127–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  68. Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Kraft for help during cryo-EM data collection. Cryo-EM of the complete vRNAP was carried out in the cryo-EM facility of the University of Würzburg (DFG – INST 93/903-1 FUGG). This work was supported by the DFG (Fi 573/21-1) and the Hope Realized Medical Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.B. and C.G. designed transcription scaffolds and acquired cryo-EM data. B.B. assisted during cryo-EM data collection. J.B. performed functional vRNAP and scaffold binding assays, purified the vRNAP complexes and prepared cryo-EM samples. C.G. processed the cryo-EM data, built and refined the models, analyzed the models and prepared the figures and videos. C.G. and U.F. wrote the manuscript. U.F. designed and supervised the project. A.A.S. and U.F. acquired funding.

Corresponding authors

Correspondence to Clemens Grimm or Utz Fischer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reconstitution and preparative purification of vRNAP-promoter complexes.

Approx. 400 µg affinity-purified complete vRNAP was incubated with a 60-fold molar excess of the synthetic DNA scaffold in the presence of 1 mM NTPs and separated by gradient centrifugation. Fractions 13-16 were pooled and used for cryo-EM studies. (b) Representative micrograph and (c) representative 2D classes of the dataset. If applicable, the images are annotated with the names of the predominant particle type. (d) Classification and refinement scheme. (e) Local resolution mapped to the consensus reconstruction density iso-surface (only a mild B-factor sharpening of -10 Å2 was applied). (f) Masked VETF and DNA region after multibody refinement. (g) FSC curves for consensus and multibody refinements. (h) Angular distribution plots referring to the consensus reconstruction in E. (i) Selected views of the final, B-factor sharpened (−60 Å2) cryo-EM density isosurface overlaid with the model.

Extended Data Fig. 2 DNA contacts in the PIC.

Transparent blue iso-surface of the cryo-EM density for the bound DNA, filtered by a Gaussian blur to 1.5σ standard deviation. The model is shown in cartoon style and the initially melted region (IMR) is indicated. Top view of the PIC with VETF removed (top view) and vRNAP core shown as solvent accessible surface. The clamp head and lobe are marked on the molecular surface by a rose dotted line, respectively. (b) Front view of the PIC with core removed (front view) and VETF shown in cartoon representation. (c) PIC with vRNAP removed shown in cartoon view turned by roughly 90° relative to B. and slightly optimized for clarity (d) Upstream promoter contacts to the core vRNAP. Detailed view of the upstream promoter contacts to the core vRNAP in cartoon representation. The lobe region contacting the DNA is indicated with a rose dotted line. (e) Cartoon model of VETFs and downstream DNA with superposed ideal B DNA in transparent grey is shown. The respective helix axes are indicated and Phe 271 is depicted in stick representation. (f) A depiction of the promoter-bound yeast XPB homologue SSL2 from the yeast PIC bound to TFIIH and core mediator (Schilbach et al., 2017) (PDB:5oqm) analogous to a. The axis of the bent, bound DNA (blue) is indicated. Both arms of the DNA helix axis bend angles in (e) and (f) lie approximately in the paper plane. (g) Vaccinia PIC model in cartoon representation as shown in Fig. 1a, front view. (h) Pol II core PIC model (PDB 5IY6) in cartoon representation and oriented by superposition of the Pol II core polymerase with the core vRNAP of the vaccinia PIC in (g). Elements identified as functionally, architecturally or structurally corresponding are colored according to the scheme used for the vaccinia PIC throughout this manuscript.

Extended Data Fig. 3 Cryo EM reconstruction of lPIC and ITC.

(a) classification and refinement scheme. Areas used for local classification is encircled in magenta. (b) Local resolution mapped to the reconstruction density isosurface. (c) FSC plots for consensus refinement and the separaty bodies of the multibody (MB) refinement. (d) Angular orientation plots referring to the reconstructions in (b).

Extended Data Fig. 4 Cryo EM reconstruction of the lITC.

(a) classification and refinement scheme. (b) Local resolution mapped to the reconstruction density isosurface. (c) FSC plots for consensus refinement and the two-bogy MB refinement, respectively. (d) Orientation plot referring to the consensus reconstruction in (b).

Extended Data Fig. 5 Details of the DNA in the ITC and lITC.

(a) Cryo EM density for DNA in the ITC. (b) Cryo EM density for DNA in the lITC. The blunt ends of the synthetic DNA scaffold are recognizable in the density. Note that the position of the downstream end of the scaffold has advanced roughly 5 bp when comparing the ITC (a) to the lITC (b) structure. The visible upstream blunt end indicates extensive promoter scrunching. (c) Transcription bubble in the lITC. A zoomed view into the active site region is depicted. Disordered regions of the template and non-template strand are shown as dotted lines. The start and end positions of the melted promoter and the base at the active site are numbered relative to the TSS. (d) illustration of major rearrngments during ITC formation. The lITC model is shown in carton representation. The B-cyclin as in the lPIC structure is shown as a molecular surface. In this orientation it would obstruct the upstream DNA path. The domain rearrangement is indicated ba a magenta arrow. (e) Analogous to (d), the B ribbon as in the lPIC structure is shown as a molecular surface, its rearrangement indicated as a magenta arrow. The stabilization of transiently flexible regions of Rap94 in the lITC by formation of a β strand to the core vRNAP is highlighted with a magenta box.

Extended Data Fig. 6 Comparison of Vaccinia NPH-I and VETFs with structurally related helicases.

Color code according to common structural elements. The helicase ATPase modules were extracted from structures with the following PDB ID codes: Complete vRNAP: 6RFL, INO80: 6HTS, Rad26: 5VVR, XPB: 6NMI.

Supplementary information

Reporting Summary

Peer Review Information

Supplementary Video 1

Reconfiguration of complete vRNAP to the PIC and details of promoter binding and melting.

Supplementary Video 2

Remodeling of the vaccinia PIC, the template strand capture mechanism and upstream promoter scrunching.

Source data

Source Data Fig. 1

Scan of film for the band shift experiment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, C., Bartuli, J., Boettcher, B. et al. Structural basis of the complete poxvirus transcription initiation process. Nat Struct Mol Biol 28, 779–788 (2021). https://doi.org/10.1038/s41594-021-00655-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00655-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing