Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism

Abstract

Transient receptor potential vanilloid subfamily member 3 (TRPV3) is a temperature-sensitive cation channel. Previous cryo-EM analyses of TRPV3 in detergent micelles or amphipol proposed that the lower gate opens by α-to-π helical transitions of the nearby S6 helix. However, it remains unclear how physiological lipids are involved in the TRPV3 activation. Here we determined the apo state structure of mouse (Mus musculus) TRPV3 in a lipid nanodisc at 3.3 Å resolution. The structure revealed that lipids bound to the pore domain stabilize the selectivity filter in the narrow state, suggesting that the selectivity filter of TRPV3 affects cation permeation. When the lower gate is closed in nanodisc-reconstituted TRPV3, the S6 helix adopts the π-helical conformation without agonist- or heat-sensitization, potentially stabilized by putative intra-subunit hydrogen bonds and lipid binding. Our findings provide insights into the lipid-associated gating mechanism of TRPV3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Architecture and ion permeation pore of mouse TRPV3 (mTRPV3-ΔN) in a lipid nanodisc.
Fig. 2: Structural changes of the selectivity filter in TRPV3.
Fig. 3: Lower gate architecture of TRPV3 in a nanodisc.
Fig. 4: The hydrogen bond between Asp586 and Thr680.
Fig. 5: Proposed mechanistic models for TRPV3 activation.

Similar content being viewed by others

Data availability

Cryo-EM density maps have been deposited in the Electron Microscopy Data Bank (EMDB), under accession number EMD-0882. Model coordinates have been deposited in the Protein Data Bank (wwPDB), under accession code PDB 6LGP. The associated electron microscopy data have been deposited in the Electron Microscopy Public Image Archive, under accession code EMPIAR-10400. Source data for Fig. 4e and Extended Data Fig. 1a are available with the paper online.

References

  1. Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to Trp channels. Ann. Rev. Physiol. 68, 619–647 (2005).

    Article  Google Scholar 

  2. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Sherkheli, M. A., Vogt-Eisele, A. K., Weber, K. & Hatt, H. Camphor modulates TRPV3 cation channels activity by interacting with critical pore-region cysteine residues. Pak. J. Pharm. Sci. 26, 431–438 (2013).

    CAS  PubMed  Google Scholar 

  5. Chung, M.-K. 2-Aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J. Neurosci. 24, 5177–5182 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogt-Eisele, A. K. et al. Monoterpenoid agonists of TRPV3. Br. J. Pharmacol. 151, 530–540 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qu, Y., Wang, G., Sun, X. & Wang, K. Inhibition of the warm-temperature activated Ca2+-permeable transient receptor potential vanilloid TRPV3 channel attenuates atopic dermatitis. Mol. Pharmacol. 96, 393–400 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, Z. et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am. J. Hum. Genet. 90, 558–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Atherton, D. J., Sutton, C. & Jones, B. M. Mutilating palmoplantar keratoderma with periorificial keratotic plaques (Olmsted’s syndrome). Br. J. Dermatol. 122, 245–252 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Asakawa, M. et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J. Invest. Dermatol. 126, 2664–2672 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Klein, A. S., Tannert, A. & Schaefer, M. Cholesterol sensitises the transient receptor potential channel TRPV3 to lower temperatures and activator concentrations. Cell Calcium 55, 59–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, H.-Z. et al. Potentiation of TRPV3 channel function by unsaturated fatty acids. J. Cell. Physiol. 208, 201–212 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doerner, J. F., Hatt, H. & Ramsey, I. S. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J. Gen. Physiol. 137, 271–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zubcevic, L. et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh, A. K., McGoldrick, L. L. & Sobolevsky, A. I. Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat. Struct. Mol. Biol. 25, 805–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zubcevic, L. et al. Conformational ensemble of the human TRPV3 ion channel. Nat. Commun. 9, 4773 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zubcevic, L., Borschel, W. F., Hsu, A. L., Borgnia, M. J. & Lee, S. Y. Regulatory switch at the cytoplasmic interface controls TRPV channel gating. Elife 8, e47746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, B., Yao, J., Zhu, M. X. & Qin, F. Hysteresis of gating underlines sensitization of TRPV3 channels. J. Gen. Physiol. 138, 509–520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019).

  23. Liu, B. & Qin, F. Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3. Proc. Natl Acad. Sci. USA 114, 1589–1594 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Grandl, J. et al. Pore region of TRPV3 ion channel is specifically required for heat activation. Nat. Neurosci. 11, 1007–1013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bayburt, T. H. & Sligar, S. G. Membrane protein assembly into nanodiscs. FEBS Lett. 584, 1721–1727 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Q. et al. Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature 550, 415–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng, Y. et al. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359, 228–232 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Grinkova, Y. V., Denisov, I. G. & Sligar, S. G. Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng. Des. Sel. 23, 843–848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Deng, Z. et al. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat. Struct. Mol. Biol. 25, 252–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang, L. et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505, 56–61 (2014).

    Article  PubMed  Google Scholar 

  32. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A Found. Adv. 32, 751–767 (1976).

    Article  Google Scholar 

  33. Nightingale, E. R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).

    Article  CAS  Google Scholar 

  34. Cheng, W. et al. Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J. Biol. Chem. 287, 7279–7288 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Jara-Oseguera, A., Huffer, K. E. & Swartz, K. J. The ion selectivity filter is not an activation gate in TRPV1-3 channels. Elife 8, e51212 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dukkipati, A., Park, H. H., Waghray, D., Fischer, S. & Garcia, K. C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif. 62, 160–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  42. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Nakane for computational support and assistance with the single-particle analysis and model building, K. Yamashita for computational support and model building and Y. Lee for fruitful discussions and encouragement. We also thank the staff scientists at the University of Tokyo’s cryo-EM facility, especially K. Kobayashi, H. Yanagisawa, A. Tsutsumi, M. Kikkawa and R. Danev. This work was supported by a MEXT Grant-in-Aid for Specially Promoted Research (grant no. 16H06294) to O.N. and by MEXT KAKENHI Grant-in-Aid for Scientific Research(C) (18K60156). This research was supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research) from AMED under grant no. JP19am01011115 (support number 1110).

Author information

Authors and Affiliations

Authors

Contributions

H.S., T.K., T.H. and O.N. designed the project. T.K. investigated the conditions for TRPV3 expression. H.S. performed protein expression, purification and cryo-EM sample preparation, with assistance from T.K. H.S., T.K. and T.N. performed data collection. H.S. processed and analyzed the cryo-EM data with assistance from T.K. T.N., H.S. and T.K. built the models. T.H.D.N. and M.T. performed the electrophysiology, protein biotinylation, western blotting and statistical analysis. H.S., T.K., T.H.D.N., T.N., T.H., M.T. and O.N. wrote the manuscript. O.N. supervised the research.

Corresponding author

Correspondence to Osamu Nureki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Functional characterization and nanodisc reconstitution of truncated mutant TRPV3.

a, Temperature thresholds of mTRPV3WT (light blue) and mTRPV-ΔN (light orange), stimulated by heat, 10 mM camphor, or 300 mM 2-APB. b, c, Electrophysiological comparison between mouse TRPV3 WT (mTRPV3-WT) (b) and N-terminal truncated mutant (mTRPV3ΔN) (c), by whole-cell patch-clamp recordings in HEK293 cells. mTRPV3-ΔN has the same electrophysiological profile as mTRPV3-WT. Graphs show mean and s.e.m. for indicated number of recordings. The source data are available online. d, e, Size exclusion chromatogram (d) and SDS–PAGE (e) of mTRPV3-ΔN in a nanodisc.

Source data

Extended Data Fig. 2 Overview of single-particle cryo-EM for mTRPV3-ΔN in a nanodisc.

a, Cryo-EM micrograph of mTRPV3-ΔN in a nanodisc, with example particles circled in red. b, Reference-free 2D class images of mTRPV3-ΔN in a nanodisc. c, 3D class averages of mTRPV3-ΔN in a nanodisc. d, Refined density, at 3.31 Å resolution (FSC = 0.143). e, FSC curves of the map of TRPV3 in a nanodisc. The horizontal dashed line indicated FSC = 0.143. f, Euler angular distribution for particles used in the final map of TRPV3 in a nanodisc.

Extended Data Fig. 3 The local resolution mapped on the density of mTRPV3-ΔN in a nanodisc.

The map was obtained using CueMol2 at a 0.010 threshold level (http://www.cuemol.org/). The local resolution is higher in the Transmembrane core than the Intracellular region.

Extended Data Fig. 4 Cryo-EM density of mTRPV3-ΔN in a nanodisc.

a, Cryo-EM density (blue mesh) at 2.4σ for a single TRPV3 subunit; the structure, shown as a ribbon, is colored according to the domains. b–i, Fragments of the TRPV3 transmembrane region with the corresponding cryo-EM densities shown as a blue mesh at 2.4σ. j, Cross-validation FSC curves for the refined model versus unfiltered half maps (only half map 1 was used for refinement with PHENIX42) and the summed map.

Extended Data Fig. 5 Lipid-like densities observed in mTRPV3-ΔN in a nanodisc.

a, The seven lipid-like densities (1-7) observed in mTRPV3-ΔN in a nanodisc map. Five densities (1-5) are sufficient to be modeled as phosphatidylcholine. The density is shown at 3.5σ. b, The site occupied by Lipid 1, known as the Vanilloid Binding Pocket, in TRPV1 structures in nanodiscs (PDB: 5IRZ). c, d, The lipid-like densities ascribed to Lipid 2 (c) and Lipid 6 (d) are observed in the TRPV3 structure in digitonin micelles (PDB: 6DVW).

Extended Data Fig. 6 Model validation map of selectivity filter.

a, Ribbon model around the selectivity filter, in stereo. The oxygens of the Gly638 and Gly640 mainchains, and the side chains of Leu639 and Asp641 are shown in stick models. EM density map around Gly638 – Asp641 shown in a gray mesh. b, Superimposition of the pore domain of TRPV3 in a nanodisc (pink) and the TRPV3 open state (light blue) (PDB: 6DVZ), according to the Cα atoms of the S6 helices (Pro651–Ser685), viewed from the extracellular side (same perspective as Fig. 3a). c, Comparison of the phospholipid-binding site in Fig. 3c between TRPV3 in a nanodisc (pink) and the TRPV3 open state (light blue) (same perspective as Fig. 3d). Both models are superimposed on the Cα atoms of the S6 helix (Pro651–Ser685) as a guide. The phospholipid observed in a nanodisc and the residues shown in Fig. 3c in the open state are indicated by stick and CPK models, respectively, revealing that the residues clashed with Lipid 3. d-g, Known TRPV3 structural models fitted to each EM density map (shown in blue mesh). TRPV3 in the closed state in digitonin micelles (purple) (d), closed state in amphipol (yellow) (e), sensitized state (green) (f), and open state (light blue) (g).

Extended Data Fig. 7 Close-up views of Lipid 4, Lipid 5, and Lipid 7.

a, Locations of the densities observed in Lipid 4, Lipid 5, and Lipid 7, indicated as a blue mesh at 3.0σ. The modeled phosphatidylcholine (Lipid 4, Lipid 5), the partially modeled acyl chain (Lipid 7), and the residues near Lipid 4 and Lipid 7 are shown as sticks. b, Interaction between Lipid 4 and the extracellular part of the S5 helix, viewed from the extracellular side and the residues nearby Lipid 4 are shown as sticks. c, Interactions among the intracellular region of the S5 helix, Lipid 5, and Lipid 7, viewed parallel to the membrane, and the residues nearby Lipid 7 are shown as sticks. d, e, Location of the density observed for Lipid 7 in previously reported structures: TRPV3-sensitized state (PDB: 6MHS) (d), TRPV3 open state (PDB: 6DVZ) (e), and the residues nearby the densities are shown as sticks.

Supplementary information

Source data

Source Data Fig. 4

Statistical source data of Fig. 4e

Source Data Extended Data Fig. 1

Statistical source data of Extended data Fig. 1a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, H., Kusakizako, T., Dung Nguyen, T.H. et al. The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nat Struct Mol Biol 27, 645–652 (2020). https://doi.org/10.1038/s41594-020-0439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0439-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing