Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension

Abstract

Hypertension (HTN), a disease afflicting over one billion individuals worldwide, is a leading cause of cognitive impairment, the mechanisms of which remain poorly understood. In the present study, in a mouse model of HTN, we find that the neurovascular and cognitive dysfunction depends on interleukin (IL)-17, a cytokine elevated in individuals with HTN. However, neither circulating IL-17 nor brain angiotensin signaling can account for the dysfunction. Rather, IL-17 produced by T cells in the dura mater is the mediator released in the cerebrospinal fluid and activating IL-17 receptors on border-associated macrophages (BAMs). Accordingly, depleting BAMs, deleting IL-17 receptor A in brain macrophages or suppressing meningeal T cells rescues cognitive function without attenuating blood pressure elevation, circulating IL-17 or brain angiotensin signaling. Our data unveil a critical role of meningeal T cells and macrophage IL-17 signaling in the neurovascular and cognitive dysfunction in a mouse model of HTN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DOCA-salt HTN induces neurovascular and cognitive impairment.
Fig. 2: The neurovascular and cognitive impairment induced by DOCA is mediated by IL-17.
Fig. 3: IL-17 impairs endothelial vasodilatation by downregulating NO bioavailability via endothelial IL-17 receptors.
Fig. 4: IL-17 impairs functional hyperemia via enhanced ROS production mediated by IL-17RA in BAMs.
Fig. 5: IL-17RA deletion in BAMs improves functional hyperemia and cognitive function in DOCA-salt.
Fig. 6: Salt-sensitive hypertension increases IL-17-producing T cells located in the dura mater.
Fig. 7: Cognitive impairment in salt-sensitive HTN is driven by meningeal IL-17-producing T cells.
Fig. 8: The contribution of Ang II to the cerebrovascular dysfunction in DOCA-salt depends on IL-17 signaling.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Any additional data requests are available from the corresponding authors upon request.

References

  1. Levine, D. A., Springer, M. V. & Brodtmann, A. Blood pressure and vascular cognitive impairment. Stroke 53, 1104–1113 (2022).

    PubMed  PubMed Central  Google Scholar 

  2. Muntner, P. et al. Blood pressure control among us adults, 2009 to 2012 through 2017 to 2020. Hypertension 79, 1971–1980 (2022).

    CAS  PubMed  Google Scholar 

  3. Carey, R. M., Sakhuja, S., Calhoun, D. A., Whelton, P. K. & Muntner, P. Prevalence of apparent treatment-resistant hypertension in the United States. Hypertension 73, 424–431 (2019).

    CAS  PubMed  Google Scholar 

  4. Williamson, J. D. et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 321, 553–561 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Webb, A. J. S. & Werring, D. J. New insights into cerebrovascular pathophysiology and hypertension. Stroke 53, 1054–1064 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Iadecola, C. & Gottesman, R. F. Neurovascular and cognitive dysfunction in hypertension: epidemiology, pathobiology and treatment. Circ. Res. 124, 1025–1044 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Oh, Y. S. et al. National Heart, Lung, and Blood Institute Working Group report on salt in human health and sickness: building on the current scientific evidence. Hypertension 68, 281–288 (2016).

    PubMed  Google Scholar 

  8. Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7–e46 (2016).

    CAS  PubMed  Google Scholar 

  9. Grobe, J. L. et al. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension 57, 600–607 (2011).

    CAS  PubMed  Google Scholar 

  10. Basting, T. & Lazartigues, E. DOCA-salt hypertension: an update. Curr. Hypertens. Rep. 19, 32 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Meade, T. W., Imeson, J. D., Gordon, D. & Peart, W. S. The epidemiology of plasma renin. Clin. Sci. 64, 273–280 (1983).

    CAS  Google Scholar 

  12. Alderman, M. H. et al. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N. Engl. J. Med. 324, 1098–1104 (1991).

    CAS  PubMed  Google Scholar 

  13. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    CAS  PubMed  Google Scholar 

  14. Yao, W., Sun, Y., Wang, X. & Niu, K. Elevated serum level of interleukin 17 in a population with prehypertension. J. Clin. Hypertens. 17, 770–774 (2015).

    CAS  Google Scholar 

  15. Simundic, T. et al. Interleukin 17a and toll-like receptor 4 in patients with arterial hypertension. Kidney Blood Press. Res. 42, 99–108 (2017).

    CAS  PubMed  Google Scholar 

  16. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic Th17 cells. Nature 496, 518–522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, C. et al. Induction of pathogenic Th17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    CAS  Google Scholar 

  19. Faraco, G. et al. Hypertension enhances Aβ-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J. Cereb. Blood Flow. Metab. 36, 241–252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kopp, C. et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61, 635–640 (2013).

    CAS  PubMed  Google Scholar 

  21. Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated Th17 response. Nat. Neurosci. 21, 240–249 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Toda, N., Ayajiki, K. & Okamura, T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharm. Rev. 61, 62–97 (2009).

    CAS  PubMed  Google Scholar 

  24. Iadecola, C. et al. The neurovasculome: key roles in brain health and cognitive impairment: a scientific statement from the American Heart Association/American Stroke Association. Stroke 54, e251–e271 (2023).

    PubMed  PubMed Central  Google Scholar 

  25. Itani, H. A. et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68, 123–132 (2016).

    CAS  PubMed  Google Scholar 

  26. Kim, S. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. 132, 701–718 (2018).

    CAS  Google Scholar 

  27. Esplugues, E. et al. Control of Th17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 22, 516–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maeda, Y. et al. Il-17-producing vγ4+ γδ T cells require sphingosine 1-phosphate receptor 1 for their egress from the lymph nodes under homeostatic and inflammatory conditions. J. Immunol. 195, 1408–1416 (2015).

    CAS  PubMed  Google Scholar 

  30. Korbelin, J. et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8, 609–625 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Santisteban, M. M. et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

    CAS  PubMed  Google Scholar 

  32. El Malki, K. et al. An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. J. Invest Dermatol. 133, 441–451 (2013).

    CAS  PubMed  Google Scholar 

  33. Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikolakopoulou, A. M. et al. Endothelial LPR1 protects against neurodegeneration by blocking cyclophilin A. J. Exp. Med. 218, e20202207 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    PubMed  Google Scholar 

  36. Park, L. et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer abeta peptides. Circ. Res. 121, 258–269 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sayd, A. et al. Depletion of brain perivascular macrophages regulates acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat frontal cortex. Eur. Neuropsychopharmacol. 34, 50–64 (2020).

    CAS  PubMed  Google Scholar 

  38. Mendiola, A. S. et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 21, 513–524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ivan, D. C., Walthert, S., Berve, K., Steudler, J. & Locatelli, G. Dwellers and trespassers: mononuclear phagocytes at the borders of the central nervous system. Front Immunol. 11, 609921 (2020).

    CAS  PubMed  Google Scholar 

  40. Garcia-Bonilla, L. et al. Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation. Brain Behav. Immun. 95, 489–501 (2021).

    CAS  PubMed Central  Google Scholar 

  41. Hohsfield, L. A. et al. Effects of long-term and brain-wide colonization of peripheral bone marrow-derived myeloid cells in the CNS. J. Neuroinflamm. 17, 279 (2020).

    CAS  Google Scholar 

  42. Chinnery, H. R., Ruitenberg, M. J. & McMenamin, P. G. Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J. Neuropathol. Exp. Neurol. 69, 896–909 (2010).

    PubMed  Google Scholar 

  43. Pietrowski, E. et al. Pro-inflammatory effects of interleukin-17a on vascular smooth muscle cells involve NAD(P)H-oxidase derived reactive oxygen species. J. Vasc. Res. 48, 52–58 (2011).

    CAS  PubMed  Google Scholar 

  44. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    CAS  Google Scholar 

  45. Ribeiro, M. et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e1027 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ranieri, E., Netti, G. S. & Gigante, M. CTL ELISPOT assay and T cell detection. Methods Mol. Biol. 2325, 65–77 (2021).

    CAS  PubMed  Google Scholar 

  48. Jones, H. E., Abrams, K. A. & Siegenthaler, J. A. Techniques for visualizing fibroblast-vessel interactions in the developing and adult CNS. Neurophotonics 9, 021911 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Derk, J. et al. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev. Cell 58, 635–644.e4 (2023).

    CAS  PubMed  Google Scholar 

  50. Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).

    CAS  PubMed Central  Google Scholar 

  51. Prinz, I., Silva-Santos, B. & Pennington, D. J. Functional development of γδ T cells. Eur. J. Immunol. 43, 1988–1994 (2013).

    CAS  PubMed  Google Scholar 

  52. Gray, E. E. et al. Deficiency in IL-17-committed vγ4+ γδ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14, 584–592 (2013).

    CAS  PubMed Central  Google Scholar 

  53. McKenzie, D. R. et al. lL-17-producing γδ T cells switch migratory patterns between resting and activated states. Nat. Commun. 8, 15632 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    CAS  Google Scholar 

  55. Chiba, K. et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. J. Immunol. 160, 5037–5044 (1998).

    CAS  PubMed  Google Scholar 

  56. Enosawa, S., Suzuki, S., Kakefuda, T., Li, X. K. & Amemiya, H. Induction of selective cell death targeting on mature T-lymphocytes in rats by a novel immunosuppressant, FTY720. Immunopharmacology 34, 171–179 (1996).

    CAS  Google Scholar 

  57. Krebs, C. F. et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45, 1078–1092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. De Silva, T. M., Modrick, M. L., Grobe, J. L. & Faraci, F. M. Activation of the central renin-angiotensin system causes local cerebrovascular dysfunction. Stroke 52, 2404–2413 (2021).

    PubMed  PubMed Central  Google Scholar 

  59. Lu, X. & Crowley, S. D. The immune system in hypertension: a Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 79, 1339–1347 (2022).

    CAS  Google Scholar 

  60. Norlander, A. E., Madhur, M. S. & Harrison, D. G. The immunology of hypertension. J. Exp. Med. 215, 21–33 (2018).

    CAS  PubMed Central  Google Scholar 

  61. Drummond, G. R., Vinh, A., Guzik, T. J. & Sobey, C. G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 19, 517–532 (2019).

    CAS  PubMed  Google Scholar 

  62. Higaki, A., Mahmoud, A. U. M., Paradis, P. & Schiffrin, E. L. Role of interleukin-23/interleukin-17 axis in T-cell mediated actions in hypertension. Cardiovasc Res. 117, 1274–1283 (2020).

    Google Scholar 

  63. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. Cortes-Canteli, M. & Iadecola, C. Alzheimer’s disease and vascular aging: JACC focus seminar. J. Am. Coll. Cardiol. 75, 942–951 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Brigas, H. C. et al. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 36, 109574 (2021).

    CAS  PubMed  Google Scholar 

  67. Rouch, L. et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 29, 113–130 (2015).

    CAS  Google Scholar 

  68. Ding, J. et al. Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol. 19, 61–70 (2020).

    CAS  PubMed  Google Scholar 

  69. James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507–520 (2014).

    CAS  PubMed  Google Scholar 

  70. Harrison, D. G., Coffman, T. M. & Wilcox, C. S. Pathophysiology of hypertension: the mosaic theory and beyond. Circ. Res. 128, 847–863 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  72. Ma, T., Wang, F., Xu, S. & Huang, J. H. Meningeal immunity: structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav. Immun. 93, 264–276 (2021).

    CAS  PubMed  Google Scholar 

  73. Hayashi, S., Lewis, P., Pevny, L. & McMahon, A. P. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119, S97–S101 (2002).

    PubMed  Google Scholar 

  74. Belanger, K. M. et al. Greater T regulatory cells in females attenuate DOCA-salt-induced increases in blood pressure versus males. Hypertension 75, 1615–1623 (2020).

    CAS  PubMed  Google Scholar 

  75. Korvela, M. et al. Quantification of 10 elements in human cerebrospinal fluid from chronic pain patients with and without spinal cord stimulation. J. Trace Elem. Med. Biol. 37, 1–7 (2016).

    CAS  PubMed  Google Scholar 

  76. Bischoff, K., Lamm, C., Erb, H. N. & Hillebrandt, J. R. The effects of formalin fixation and tissue embedding of bovine liver on copper, iron, and zinc analysis. J. Vet. Diagn. Invest. 20, 220–224 (2008).

    PubMed  Google Scholar 

  77. Capone, C. et al. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin ii precedes the development of hypertension. Am. J. Physiol. Heart Circ. Physiol. 300, H397–H407 (2011).

    CAS  PubMed  Google Scholar 

  78. Kober, F. et al. High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn. Reson. Med. 51, 62–67 (2004).

    PubMed  Google Scholar 

  79. Deacon, R. M. Assessing nest building in mice. Nat. Protoc. 1, 1117–1119 (2006).

    PubMed  Google Scholar 

  80. Faraco, G. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574, 686–690 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brea, D. et al. Stroke affects intestinal immune cell trafficking to the central nervous system. Brain Behav. Immun. 96, 295–302 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Louveau, A., Filiano, A. & Kipnis, J. Meningeal whole mount preparation and characterization of neural cells by flow cytometry. Curr. Protoc. Immunol. 121, e50 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    CAS  PubMed Central  Google Scholar 

  84. Borst, K. & Prinz, M. Deciphering the heterogeneity of myeloid cells during neuroinflammation in the single-cell era. Brain Pathol. 30, 1192–1207 (2020).

    PubMed Central  Google Scholar 

  85. Mendes, N. F. & Velloso, L. A. Perivascular macrophages in high-fat diet-induced hypothalamic inflammation. J. Neuroinflamm. 19, 136 (2022).

    CAS  Google Scholar 

  86. Park, L. et al. Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-beta. Proc. Natl Acad. Sci. USA 108, 5063–5068 (2011).

    CAS  PubMed Central  Google Scholar 

  87. Rudick, R. A., Zirretta, D. K. & Herndon, R. M. Clearance of albumin from mouse subarachnoid space: a measure of CSF bulk flow. J. Neurosci. Methods 6, 253–259 (1982).

    CAS  PubMed  Google Scholar 

  88. Lim, N. K. et al. An improved method for collection of cerebrospinal fluid from anesthetized mice. J. Vis. Exp. 19, 56774 (2018).

    Google Scholar 

  89. Nakamoto, H. et al. Angiotensin-(1-7) and nitric oxide interaction in renovascular hypertension. Hypertension 25, 796–802 (1995).

    CAS  PubMed  Google Scholar 

  90. Park, L. et al. Tau induces PSD95-neuronal nos uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat. Neurosci. 23, 1079–1089 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (nos. R37-NS089323 and R01-NS095441 to C.I. and K22-NS123507 to M.M.S.), as well as the Leon Levy Fellowship in Neuroscience (to M.M.S.). The support from the Feil Family Foundation is gratefully acknowledged. Figure schematics were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

M.M.S, S.S., A.A., G.F., D.B.L. and R.S. conducted the experiments and performed the data analysis. G.W. performed the NO measurement of vessels ex vivo. M.J.S. performed the RNAscope experiments and assisted in mouse breeding and genotyping. G.R. performed the RT–qPCR. A.W. provided IL-17RAflox/flox mice and edited the manuscript. L.P., J.A. and C.I. supervised the research. M.M.S. and C.I. provided funding and wrote the manuscript.

Corresponding authors

Correspondence to Monica M. Santisteban or Costantino Iadecola.

Ethics declarations

Competing interests

C.I. is on the scientific advisory board of Broadview Ventures. All other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Jasmin Herz, Peng Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Physiological parameters at 21 days of DOCA-salt HTN.

(A-B) Tissue sodium (A) and potassium (B) content was assessed by inductively coupled plasma – atomic emission spectrometry (ICP-AES)75,76. Intergroup differences analyzed by unpaired two-tailed t-test for each organ, n = 6–10 mice/group as shown. (C-D) BBB permeability (D) assessed by brain extravasation of 3 kDa FITC-dextran (C) quantified by spectrophotometry in brain homogenates revealed no impairment during DOCA-salt hypertension (n = 5–8). (E-F) DOCA-salt HTN does not impair resting CBF assessed quantitatively by arterial spin label (ASL)-MRI (control (E) n = 10 mice, DOCA (F) n = 9 mice) at 21 days of treatment in the hippocampus (Hipp), cortex (Ctx), amygdala (Amyg), caudate putamen (CP), thalamus (Thal), or hypothalamus (Hypoth). Intergroup differences analyzed by two-way ANOVA with Tukey’s multiple comparisons test. (G) IL17-GFP+ neutrophils were not changed by DOCA-salt in peripheral blood mononuclear cells (PBMC) or in the dura. n = 4/group.

Source data

Extended Data Fig. 2 Systolic blood pressure measured by tail-cuff plethysmography.

Systolic blood pressure (SBP) was assessed twice per week in all control and DOCA-salt mice of the following groups: (A) wild-type (WT, n = 10 mice) and IL17-deficient (IL17KO, n = 6 mice) mice, (B) WTBR1 (n = 5 mice/group) and IL17RA brain endothelial cell knockout (IL17RAbECKO, n = 6 mice/group), (C) mice treated with vehicle (PBS) or clodronate (CLO)-containing liposomes (n = 10 mice/group), (D and E) bone marrow chimeras (n = 5 mice/group), and (F) i.c.v. saline or losartan (n = 6 mice/group). Intergroup differences analyzed by two-way repeated measures ANOVA with Tukey’s multiple comparisons test.

Source data

Extended Data Fig. 3 Cerebral endothelial cell specific Cre delivery with AAV-BR1-iCre.

(A) AAV-BR1-iCre delivery in Ai14-ROSAtdTomato reporter mice demonstrates (B) widespread TdTomato (TdTM) expression in cerebral vessels. Scale bar: 500μm. (C) Specifically, we observed a 90–95% endothelial viral transduction in vessels less than 20μm (n = 5 mice, 110 vessels per mouse). (D) Representative images of TdTM expression in CD31+ endothelial cells. Scale bar: 150μm. (E) Quantification of genomic IL-17RA deletion in EC and MG (n = 4 mice/group). Intergroup differences analyzed by two-way ANOVA with Tukey’s multiple-comparison test.

Source data

Extended Data Fig. 4 Brain macrophages depletion with clodronate and ROS measurement.

(A) i.c.v. clodronate depletes brain macrophages for 21 days, and (B) initially depletes dura macrophages, but they are fully restored within 21 days. n = 3–7 mice/group as shown. Intergroup differences analyzed by one-way ANOVA with Tukey’s multiple-comparison test. (C) DOCA-salt does not increase BAM ROS IL17RA-/-→WT chimeras (control n = 3 mice, DOCA n = 4 mice), or (D) in WT mice treated with FTY720 (n = 4 mice/group). Intergroup differences analyzed by two-way ANOVA with Tukey’s multiple comparisons test.

Source data

Extended Data Fig. 5 Novel Mrc1CreERT2/+ mouse.

(A) Schematic of CNS macrophage compartments. (B) Illustration of the experimental procedure for intracerebroventricular (i.c.v.) FITC-Dextran injection and analysis of adult Mrc1+/+ or Mrc1CreERT2/+. (C-E) Immunofluorescence images reveals FITC-Dextran (green) (c) in BAMs (CD206 + , red) in perivascular macrophages (pvMΦ) and pial MΦ (D) and dural MΦ (E) compartments in the cortex of adult Mrc1+/+ or Mrc1CreERT2/+ mice. CD31+ blood vessels shown in cyan. Scale bars: 20 μm. (F) Quantification of pvMΦ, pial MΦ and dural MΦ in Mrc1+/+ (n = 4 mice) or Mrc1CreERT2/+ (n = 6 mice for of pvMΦ and pial MΦ, n = 5 mice for dural MΦ). Data shown as mean ± SEM; intergroup differences analyzed by two-way ANOVA with Bonferroni’s multiple comparison test. (G) CD206 surface expression levels on individual FITC-Dextran cells (pvMΦ Mrc1+/+ n = 586 cells, Mrc1CreERT2/+ n = 676 cells; pial Mrc1+/+ n = 235 cells, Mrc1CreERT2/+ n = 340 cells; dural Mrc1+/+ n = 1780 cells, Mrc1CreERT2/+ n = 1871 cells. Mrc1+/+ n = 4 mice, Mrc1CreERT2/+ n = 6 mice for of pvMΦ and pial MΦ, n = 5 mice for dural MΦ; 10 images per mouse per compartment, all cells within each image were analyzed). Intergroup differences analyzed by unpaired two-tailed Mann Whitney test; lines in violin plot indicate median and quartiles.

Source data

Extended Data Fig. 6 Novel Mrc1CreERT2/+ mouse.

(A) Experimental procedure for tamoxifen administration (TAM) and analysis of adult Mrc1+/+R26tdTM/+ or Mrc1CreERT2/+R26tdTM/+ mice. (B-D) Immunofluorescence images reveal tdTM+ (red) in CD206+ BAM (green) in perivascular macrophages (pvMΦ) (B), pial MΦ (c), and dural MΦ (D). CD31+ blood vessels shown in cyan. Scale bars: 20 μm. (E) TdTM expression was no observed in microglia (IBA1+, green) of adult Mrc1CreERT2/+R26tdTM/+ mice. Scale bars: 20 μm. (F) Quantification of recombination efficacy in pvMΦ, pial MΦ, and dural MΦ, as well as microglia in Mrc1+/+R26tdTM/+ and Mrc1CreERT2/+R26tdTM/+ mice. Data shown as mean ± SEM; Mrc1+/+R26tdTM/+ n = 5 mice per compartment except n = 3 mice for dura; and Mrc1CreERT2/+R26tdTM/+ n = 6 mice for pvMΦ and pial, and n = 5 mice for dural and microglia. (G) Experimental procedure for tamoxifen administration and analysis of Mrc1CreERT2/+ x IL17RAflox/flox mice. (H) Representative image of cerebral blood vessel stained for CD31 (yellow, IHC), Mrc1 (cyan, RNAscope) and IL17RA (magenta, RNAscope). Blood vessel shows one IL17RA- BAM and one IL17RA + BAM. This identification strategy was used for quantification of IL17RA deletion in Mrc1CreERT2/+ x IL17RAflox/flox mice. Scale bars: 10 μm.

Source data

Extended Data Fig. 7 Total numbers of cells obtained by flow cytometry in dura.

Total numbers of cells obtained by flow cytometry from control (n = 14 mice) and DOCA (n = 17 mice) dura samples. (A) Total CD4 cells. (B) Total Th17 cells. (C) Total γδT cells. (D)Total γδT17 cells.

Source data

Extended Data Fig. 8 Markers of neuroinflammation in neocortex and hippocampus.

(A-B) Selected inflammatory gene expression assessed by qPCR was not altered in cortex (A) (control n = 15 mice; DOCA n = 12 mice) or hippocampus (B) of DOCA-salt mice (control n = 10 mice; DOCA n = 8 mice). Intergroup differences analyzed by two-way ANOVA with Tukey’s multiple comparison test. (C) Iba1+ microglia and (D) GFAP+ astrocyte area was not altered in the hippocampus of DOCA-salt (control n = 3 mice, DOCA n = 4 mice). Intergroup differences analyzed by unpaired two-tailed t-test. Scale bars: 150 μm.

Source data

Extended Data Fig. 9 Brain Agtr1a and renal Ren1 mRNA expression.

Brain Agtr1a and renal Ren1 mRNA expression in (A) IL-17KO (brain n = 6 mice/group, kidney n = 5 mice/group) and (B) vehicle and FTY720-treated control and DOCA-salt mice (n = 4–8 mice/group as shown). Intergroup differences analyzed by unpaired two-tailed t-test (A) or two-way ANOVA with Tukey’s multiple comparison test (B).

Source data

Extended Data Fig. 10 Summary diagram.

Summary of the mechanisms by which DOCA-salt hypertension alters neurovascular and cognitive function in mice. These effects are mediated by concurring actions of IL17 acting on IL17RA on different cells types on both sides of the BBB. In the circulation, IL-17 produced by T-cells acts on cerebral endothelial IL-17RA to reduce NO production leading to suppression of endothelial vasoactivity without affecting the increase in CBF induced by neural activity. In the brain, IL-17 produced by dura T-cells acts on IL-17RA on BAM to induce vascular oxidative stress and suppression of functional hyperemia with minimal effects on endothelial function.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–4.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Extended Data Fig.1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santisteban, M.M., Schaeffer, S., Anfray, A. et al. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat Neurosci 27, 63–77 (2024). https://doi.org/10.1038/s41593-023-01497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01497-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing