Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation

Abstract

The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASO-mediated transient stathmin-2 suppression reduces nerve conduction velocity and triggers muscle denervation.
Fig. 2: Focal, chronic and selective suppression of stathmin-2 by subpial delivery of AAV9 shStmn2 in lumbar spinal cord results in motor deficits.
Fig. 3: Sustained loss of stathmin-2 reduces nerve conduction velocity and provokes axonal collapse by decreasing the spacing between axonal neurofilaments.
Fig. 4: Reduced stathmin-2 levels in lumbar dorsal root ganglia impair the hindlimb sensory system.
Fig. 5: Stathmin-2 has an important role early after birth, and lethality from its absence is rescued by FVB genetic background but not by Sarm1 ablation.
Fig. 6: Absence of stathmin-2 results in motor deficits and muscle denervation without motor neuron loss.
Fig. 7: Absence of stathmin-2 reduces nerve conduction velocity and alters axonal radial growth and neurofilament composition.

Similar content being viewed by others

Data availability

All mouse strains are publicly available through the Jackson Laboratory. Other materials are available under the materials transfer agreement for noncommercial replication or extension of this work, upon request to corresponding authors. All other information is available in the manuscript or the Supplementary Materials. Figures 1a, 2a and 4a were created with BioRender.com.

References

  1. Rowland, L. P. & Shneider, N. A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 344, 1688–1700 (2001).

    CAS  Google Scholar 

  2. Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).

    CAS  PubMed  Google Scholar 

  3. Fischer, L. R. et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 185, 232–240 (2004).

    Google Scholar 

  4. Killian, J. M., Wilfong, A. A., Burnett, L., Appel, S. H. & Boland, D. Decremental motor responses to repetitive nerve stimulation in ALS. Muscle Nerve 17, 747–754 (1994).

    CAS  Google Scholar 

  5. Dengler, R. et al. Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 13, 545–550 (1990).

    CAS  PubMed  Google Scholar 

  6. Gould, T. W. et al. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J. Neurosci. 26, 8774–8786 (2006).

    CAS  PubMed Central  Google Scholar 

  7. Parone, P. A. et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci. 33, 4657–4671 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Perez-Garcia, M. J. & Burden, S. J. Increasing MuSK activity delays denervation and improves motor function in ALS mice. Cell Rep. 2, 497–502 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaulieu, J. M. & Julien, J. P. Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins. J. Neurochem. 85, 248–256 (2003).

    CAS  PubMed  Google Scholar 

  10. Lee, M. K. & Cleveland, D. W. Neuronal intermediate filaments. Annu. Rev. Neurosci. 19, 187–217 (1996).

    CAS  Google Scholar 

  11. Muma, N. A., Slunt, H. H. & Hoffman, P. N. Postnatal increases in neurofilament gene expression correlate with the radial growth of axons. J. Neurocytol. 20, 844–854 (1991).

    CAS  PubMed  Google Scholar 

  12. Hoffman, P. N. & Cleveland, D. W. Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific β-tubulin isotype. Proc. Natl Acad. Sci. USA 85, 4530–4533 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoffman, P. N. et al. Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl Acad. Sci. USA 84, 3472–3476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, M. K. & Cleveland, D. W. Neurofilament function and dysfunction: involvement in axonal growth and neuronal disease. Curr. Opin. Cell Biol. 6, 34–40 (1994).

    CAS  Google Scholar 

  15. Hirokawa, N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol. 94, 129–142 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sobue, G. et al. Phosphorylated high molecular weight neurofilament protein in lower motor neurons in amyotrophic lateral sclerosis and other neurodegenerative diseases involving ventral horn cells. Acta Neuropathol. 79, 402–408 (1990).

    CAS  PubMed  Google Scholar 

  17. Cote, F., Collard, J. F. & Julien, J. P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73, 35–46 (1993).

    CAS  Google Scholar 

  18. Hirano, A., Donnenfeld, H., Sasaki, S. & Nakano, I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 461–470 (1984).

    CAS  PubMed  Google Scholar 

  19. Hirano, A. et al. Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 471–480 (1984).

    CAS  PubMed  Google Scholar 

  20. Lee, M. K., Marszalek, J. R. & Cleveland, D. W. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 13, 975–988 (1994).

    CAS  PubMed  Google Scholar 

  21. Xu, Z., Cork, L. C., Griffin, J. W. & Cleveland, D. W. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23–33 (1993).

    CAS  PubMed  Google Scholar 

  22. Bruijn, L. I., Miller, T. M. & Cleveland, D. W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749 (2004).

    CAS  PubMed  Google Scholar 

  23. Vechio, J. D., Bruijn, L. I., Xu, Z., Brown, R. H. Jr. & Cleveland, D. W. Sequence variants in human neurofilament proteins: absence of linkage to familial amyotrophic lateral sclerosis. Ann. Neurol. 40, 603–610 (1996).

    CAS  PubMed  Google Scholar 

  24. Xiao, S., McLean, J. & Robertson, J. Neuronal intermediate filaments and ALS: a new look at an old question. Biochim. Biophys. Acta 1762, 1001–1012 (2006).

    CAS  PubMed  Google Scholar 

  25. Garcia, M. L. et al. Mutations in neurofilament genes are not a significant primary cause of non-SOD1-mediated amyotrophic lateral sclerosis. Neurobiol. Dis. 21, 102–109 (2006).

    CAS  PubMed  Google Scholar 

  26. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    CAS  PubMed  Google Scholar 

  27. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    CAS  PubMed  Google Scholar 

  28. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed Central  Google Scholar 

  31. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nana, A. L. et al. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol. 137, 27–46 (2019).

    PubMed  Google Scholar 

  33. Melamed, Z. et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 22, 180–190 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Klim, J. R. et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 22, 167–179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Prudencio, M. et al. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J. Clin. Invest. 130, 6080–6092 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Krach, F. et al. Transcriptome-pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS. Acta Neuropathol. 136, 405–423 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, S. et al. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc. Natl Acad. Sci. USA 112, E6993–7002 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shin, J. E. et al. SCG10 is a JNK target in the axonal degeneration pathway. Proc. Natl Acad. Sci. USA 109, E3696–E3705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shin, J. E., Geisler, S. & DiAntonio, A. Dynamic regulation of SCG10 in regenerating axons after injury. Exp. Neurol. 252, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  40. Guerra San Juan, I. et al. Loss of mouse Stmn2 function causes motor neuropathy. Neuron 110, 1671–1688 (2022).

    CAS  PubMed  Google Scholar 

  41. Krus, K. L. et al. Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Rep. 39, 111001 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chauvin, S. & Sobel, A. Neuronal stathmins: a family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog. Neurobiol. 126, 1–18 (2015).

    CAS  PubMed  Google Scholar 

  43. Summers, D. W., Milbrandt, J. & DiAntonio, A. Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc. Natl Acad. Sci. USA 115, E8746–E8754 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Selvaraj, B. T., Frank, N., Bender, F. L., Asan, E. & Sendtner, M. Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease. J. Cell Biol. 199, 437–451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 102, 13212–13217 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyanohara, A. et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol. Ther. Methods Clin. Dev. 3, 16046 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Bravo-Hernandez, M. et al. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS. Nat. Med. 26, 118–130 (2020).

    CAS  PubMed  Google Scholar 

  48. Bravo-Hernandez, M., Tadokoro, T. & Marsala, M. Subpial AAV delivery for spinal parenchymal gene regulation in adult mammals. Methods Mol. Biol. 1950, 209–233 (2019).

    CAS  PubMed  Google Scholar 

  49. Tadokoro, T. et al. Precision spinal gene delivery-induced functional switch in nociceptive neurons reverses neuropathic pain. Mol. Ther. 30, 2722–2745 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tadokoro, T. et al. Subpial adeno-associated virus 9 (AAV9) vector delivery in adult mice. J. Vis. Exp. 13, 55770 (2017).

    Google Scholar 

  51. Joyce, N. C. & Carter, G. T. Electrodiagnosis in persons with amyotrophic lateral sclerosis. PM R 5, 89–95 (2013).

    Google Scholar 

  52. Mills, K. R. & Nithi, K. A. Peripheral and central motor conduction in amyotrophic lateral sclerosis. J. Neurol. Sci. 159, 82–87 (1998).

    CAS  PubMed  Google Scholar 

  53. De Carvalho, M. & Swash, M. Nerve conduction studies in amyotrophic lateral sclerosis. Muscle Nerve 23, 344–352 (2000).

    PubMed  Google Scholar 

  54. Hursh, J. B. Conduction velocity and diameter of nerve fibers. Am. J. Physiol. 127, 131–139 (1939).

    Google Scholar 

  55. De Waegh, S. M., Lee, V. M. & Brady, S. T. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68, 451–463 (1992).

    PubMed  Google Scholar 

  56. Friede, R. L. & Samorajski, T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec. 167, 379–387 (1970).

    CAS  PubMed  Google Scholar 

  57. Ohara, O., Gahara, Y., Miyake, T., Teraoka, H. & Kitamura, T. Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J. Cell Biol. 121, 387–395 (1993).

    CAS  PubMed  Google Scholar 

  58. Zhu, Q., Couillard-Despres, S. & Julien, J. P. Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp. Neurol. 148, 299–316 (1997).

    CAS  PubMed  Google Scholar 

  59. Garcia, M. L. et al. NF-M is an essential target for the myelin-directed ‘outside-in’ signaling cascade that mediates radial axonal growth. J. Cell Biol. 163, 1011–1020 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, M. K., Xu, Z., Wong, P. C. & Cleveland, D. W. Neurofilaments are obligate heteropolymers in vivo. J. Cell Biol. 122, 1337–1350 (1993).

    CAS  PubMed  Google Scholar 

  61. Tao, Q. Q., Wei, Q. & Wu, Z. Y. Sensory nerve disturbance in amyotrophic lateral sclerosis. Life Sci. 203, 242–245 (2018).

    CAS  PubMed  Google Scholar 

  62. Rossor, A. M., Jaunmuktane, Z., Rossor, M. N., Hoti, G. & Reilly, M. M. TDP43 pathology in the brain, spinal cord, and dorsal root ganglia of a patient with FOSMN. Neurology 92, e951–e956 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sonoda, K. et al. TAR DNA-binding protein 43 pathology in a case clinically diagnosed with facial-onset sensory and motor neuronopathy syndrome: an autopsied case report and a review of the literature. J. Neurol. Sci. 332, 148–153 (2013).

    CAS  PubMed  Google Scholar 

  64. Camdessanche, J. P. et al. Sensory and motor neuronopathy in a patient with the A382P TDP-43 mutation. Orphanet J. Rare Dis. 6, 4 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. Patapoutian, A., Peier, A. M., Story, G. M. & Viswanath, V. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4, 529–539 (2003).

    CAS  PubMed  Google Scholar 

  66. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    CAS  PubMed  Google Scholar 

  67. Le Pichon, C. E. & Chesler, A. T. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front. Neuroanat. 8, 21 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Figley, M. D. & DiAntonio, A. The SARM1 axon degeneration pathway: control of the NAD+ metabolome regulates axon survival in health and disease. Curr. Opin. Neurobiol. 63, 59–66 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Coleman, M. P. & Hoke, A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat. Rev. Neurosci. 21, 183–196 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gilley, J., Orsomando, G., Nascimento-Ferreira, I. & Coleman, M. P. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10, 1974–1981 (2015).

    CAS  PubMed Central  Google Scholar 

  71. Doetschman, T. Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol. Biol. 530, 423–433 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoffman, P. N., Griffin, J. W., Gold, B. G. & Price, D. L. Slowing of neurofilament transport and the radial growth of developing nerve fibers. J. Neurosci. 5, 2920–2929 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Marszalek, J. R. et al. Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J. Cell Biol. 135, 711–724 (1996).

    CAS  Google Scholar 

  74. Wong, P. C. et al. Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons. J. Cell Biol. 130, 1413–1422 (1995).

    CAS  PubMed  Google Scholar 

  75. Xu, Z. et al. Subunit composition of neurofilaments specifies axonal diameter. J. Cell Biol. 133, 1061–1069 (1996).

    CAS  PubMed  Google Scholar 

  76. Rao, M. V. et al. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J. Cell Biol. 158, 681–693 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Morii, H., Shiraishi-Yamaguchi, Y. & Mori, N. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons. J. Neurobiol. 66, 1101–1114 (2006).

    CAS  PubMed  Google Scholar 

  78. Riederer, B. M. et al. Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10. Proc. Natl Acad. Sci. USA 94, 741–745 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jourdain, L., Curmi, P., Sobel, A., Pantaloni, D. & Carlier, M. F. Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 36, 10817–10821 (1997).

    CAS  PubMed  Google Scholar 

  80. Marklund, U., Larsson, N., Gradin, H. M., Brattsand, G. & Gullberg, M. Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J. 15, 5290–5298 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Charbaut, E. et al. Stathmin family proteins display specific molecular and tubulin binding properties. J. Biol. Chem. 276, 16146–16154 (2001).

    CAS  PubMed  Google Scholar 

  82. Baughn, M. W. et al. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science 379, 1140–1149 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma, X. R. et al. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature 603, 124–130 (2022).

    CAS  PubMed Central  Google Scholar 

  84. Brown, A. L. et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603, 131–137 (2022).

    CAS  PubMed Central  Google Scholar 

  85. Chou, A. H. et al. Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol. Dis. 31, 89–101 (2008).

    CAS  PubMed  Google Scholar 

  86. Guyenet, S. J. et al. A simple composite phenotype scoring system for evaluating mouse models of cerebellar ataxia. J. Vis. Exp. 21, 1787 (2010).

    Google Scholar 

  87. Laird, J. M. A., Martinez-Caro, L., Garcia-Nicas, E. & Cervero, F. A new model of visceral pain and referred hyperalgesia in the mouse. Pain 92, 335–342 (2001).

    CAS  Google Scholar 

  88. Pitcher, M. H., Price, T. J., Entrena, J. M. & Cervero, F. Spinal NKCC1 blockade inhibits TRPV1-dependent referred allodynia. Mol. Pain. 3, 17 (2007).

    PubMed  PubMed Central  Google Scholar 

  89. Inyang, K. E. et al. The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice. Pharmacol. Res. 139, 1–16 (2019).

    CAS  PubMed  Google Scholar 

  90. Dixon, W. J. Efficient analysis of experimental observations. Annu. Rev. Pharmacol. Toxicol. 20, 441–462 (1980).

    CAS  PubMed  Google Scholar 

  91. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994).

    CAS  PubMed  Google Scholar 

  92. Malmberg, A. B., Chen, C., Tonegawa, S. & Basbaum, A. I. Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ. Science 278, 279–283 (1997).

    CAS  Google Scholar 

  93. Gilchrist, L. S. et al. Re-organization of P2X3 receptor localization on epidermal nerve fibers in a murine model of cancer pain. Brain Res. 1044, 197–205 (2005).

    CAS  Google Scholar 

  94. Wacnik, P. W. et al. Functional interactions between tumor and peripheral nerve: morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain. J. Neurosci. 21, 9355–9366 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Garrison, S. R., Dietrich, A. & Stucky, C. L. TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J. Neurophysiol. 107, 913–922 (2012).

    CAS  Google Scholar 

  96. Ranade, S. S. et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516, 121–125 (2014).

    CAS  PubMed Central  Google Scholar 

  97. Bogdanik, L. P. et al. Systemic, postsymptomatic antisense oligonucleotide rescues motor unit maturation delay in a new mouse model for type II/III spinal muscular atrophy. Proc. Natl Acad. Sci. USA 112, E5863–E5872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ling, K. K. et al. Antisense-mediated reduction of EphA4 in the adult CNS does not improve the function of mice with amyotrophic lateral sclerosis. Neurobiol. Dis. 114, 174–183 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bogdanik, L. P. et al. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease. Dis. Model Mech. 6, 780–792 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Muscular Dystrophy Association for supporting J.L.-E. and Z.M. with MDA Development grants. We thank the UCSD Genetics Training Program and the National Institute for General Medical Sciences, T32 GM008666 for supporting M.W.B. and T32AG066596-01 for supporting M.S.B. A.R.A.A.Q is the recipient of a Postdoctoral Fellowship from the BrightFocus Foundation (grant A2022002F). This work was supported by grants from ALS Finding a Cure (to C.L.-T.) and NINDS/NIH (R01NS112503 to M.M., C.L.-T. and D.W.C., the Nomis Foundation to D.W.C., and RF1NS124203 to C.M.L., D.W.C. and C.L.-T.). The microscope core was supported by NINDS/NIH (P30NS047101). C.L.-T. is the recipient of the Araminta Broch-Healey Endowed Chair in ALS.

Author information

Authors and Affiliations

Authors

Contributions

J.L.-E., M.B.-H., M.P., M.W.B., Z.M., M.S.B., A.Z., C.F.B., P.J.-N., F.R., M.M., C.M.L., D.W.C and C.L.-T. conceptualized the study. J.L.-E., M.B.-H., M.P., M.W.B., Z.M., M.S.B., A.R.A.d.A.Q., O.A.-G., A.Z., K.L., O.P., E.N.-J., I.S.N., M.M.-D., L.C., J.W.A. and J. Ryan conducted the experiments. J.L.-E., M.B.-H., M.P., M.W.B., Z.M., M.S.B., A.R.A.d.A.Q., O.A.-G., A.Z., K.L., O.P., I.S.N., P.J.-N., M.M., C.M.L., D.W.C. and C.L.-T. analyzed the data. J.L.-E., M.B.-H, M.P., M.W.B., D.W.C and C.L.-T. wrote the manuscript. Key methodologies and resources were provided by M.B.-H., M.P., A.Z., K.L., A.H., J. Ravits, C.F.B., P.J.-N., F.R., M.M. and C.M.L.

Corresponding authors

Correspondence to Cathleen M. Lutz, Don W. Cleveland or Clotilde Lagier-Tourenne.

Ethics declarations

Competing interests

C.F.B., M.B.-H., K.L., P.J.-N. and F.R. are employees of Ionis Pharmaceuticals. D.W.C. is a consultant for Ionis Pharmaceuticals. Z.M. and D.W.C. have a relevant patent. C.L.-T. serves on the scientific advisory board of SOLA Biosciences, Libra Therapeutics, Arbor Biotechnologies and Dewpoint Therapeutics, and has received consultant fees from Mitsubishi Tanabe Pharma Holdings America and Applied Genetic Technologies Corporation. All other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Intraventricular ASO delivery efficiently reduces stathmin-2 expression in mouse cortex and spinal cord.

(a-b) Stmn2 mRNA levels detected by FISH (a), and immunofluorescence confocal image immunolabeled for stathmin-2 protein (b), from 12-month-old WT mice spinal cord hemisections. Green arrows: α-motor neurons; blue arrows: γ-motor neurons; red arrows: interneurons. (c) Immunofluorescence confocal image of 12-month-old WT mice gastrocnemius muscle revealing stathmin-2 presence at the neuromuscular junction. (a-c) At least n=3 animals per condition were imaged with similar results. (d,e) Quantification of Stmn2 mRNA levels by qPCR (d) and immunoblots (e) showing stathmin-2 protein levels in mice cortex 2 weeks after the ICV injection of non-targeting (n=4 animals) or Stmn2 targeting ASOs (n=2 animals/per ASO). HSP-90 was used as a loading control in the immunoblotting. Statistics by two-sided, one-way ANOVA Dunnett’s multiple comparison test (P < 0.0001). (f) Immunoblots showing stathmin-2 protein levels in mouse spinal cord 2 weeks after the ICV injection of non-targeting or Stmn2 targeting ASOs. HSP-90 was used as a loading control. *Indicates non-specific band. (g) Quantification of Stmn2 mRNA levels by qPCR in mouse spinal cord 8 weeks after the ICV injection of non-targeting (n=4 animals) or Stmn2 targeting ASOs (n=4 animals/per ASO). Gapdh was used as an endogenous control gene. *** P = 0.0002 and **** P < 0.0001 (h,i) Quantification of Stmn2 mRNA levels by qPCR, (P < 0.0001) (h), and immunoblots (i) showing stathmin-2 protein levels in mice cortex 8 weeks after the ICV injection of non-targeting (n=4 animals) or Stmn2 targeting ASOs (n=4 animals/per ASO). HSP-90 was used as a loading control in the immunoblotting. Gapdh was used as an endogenous control gene. (j) Compound muscle action potential (CMAP) measurements in muscles of WT mice treated with non-targeting (n=4 animals) or Stmn2 targeting ASOs (n=4 animals/per ASO) for 8 weeks. (g,h,j) Statistics by two-sided, one-way ANOVA Dunnett’s multiple comparison test. All panels: Each data point represents an individual mouse. Error bars plotted as SEM. ****, P <0.0001; ***, P < 0.001; **, P < 0.01; *, P <0.05; ns, P >0.05.

Source data

Extended Data Fig. 2 Sustained stathmin-2 depletion induces axonal withdrawal from neuromuscular junctions without compromising motor neuron survival.

(a) Representative confocal image of gastrocnemius muscle stained for stathmin-2 (blue), muscle AChR clusters using α-bungarotoxin (red), direct imaging of clover in the 488-wavelength (green) representing viral expression, and neurofilament-H (white). At least n=3 animals were imaged with similar results. (b) Representative image of lumbar spinal cord of non-injected (left) and 2 months after subpial injection with AAV9 expressing green fluorescent protein (GFP) (right) with the respective high magnification images of the ventral spinal cord regions, below each panel. At least n=3 animals were imaged with similar results. (c) Measurement in lumbar spinal cord segments at 8-months post injection of control or Stmn2 targeting AAV9 of potential off-target genes by qRT-PCR. N=12 animals with AAV9-shControl and n=11 animals with AAV9-shStmn2. Gapdh was used as an endogenous control gene. Statistics by two-sided, unpaired t-tests. (d) Immunoblots to determine stathmin-2 protein level in mouse lumbar spinal cord 1-month after subpial injection of a Stmn2 reducing AAV9 or control shRNA. HSP-90 was used as a loading control. *Indicates non-specific band. (e) Mouse lumbar spinal cord immunofluorescence micrographs visualized with stathmin-2 antibody 8 months after subpial injection into the lumbar spinal cord of non-targeting control or Stmn2-reducing AAV9. (f) Bi-weekly measurements of mouse body weight after subpial injection of AAV9 encoding either non-targeting or Stmn2-targeting shRNA. Statistics by two-sided, two-way ANOVA and Sidak’s multiple comparison test. (g) Representative images of entire gastrocnemius muscles from mice 8 months after subpial delivery of AAV9 encoding either a non-targeting or an Stmn2-shRNA AAV9. (h-j) Representative immunofluorescence images of mouse lumbar spinal cord stained with the microglial and astrocytic markers IBA1 and GFAP (h) and quantification of microgliosis (i) and astrogliosis (j), 8 months after subpial delivery of a non-targeting control (n=4 animals) or Stmn2-targeting AAV9 shRNA (n=4 animals). Statistics by two-sided, unpaired t-tests. All panels: Each data point represents an individual mouse. Error bars plotted as SEM. ns, p>0.05.

Source data

Extended Data Fig. 3 Decreased phosphorylation of NF-M and NF-H upon sustained Stmn2 suppression.

(a) Representative micrographs of motor roots and higher magnification images of ventral root motor axon morphology and diameters, 8 months after subpial injection of AAV9 encoding non-targeting or Stmn2 targeting shRNA. (b,c) Quantification of cross-sectional area (n=5 animals/condition) (b) and of the total number of axons per ventral root (n=5 animals/condition) (c). Statistical analysis by two-sided, Mann Whitney t-test, (P = 0.0079). (d,e) Levels of total neurofilament heavy (NF-H) and neurofilament light (NF-L) (f) and total neurofilament medium (NF-M) (g) analyzed by immunoblotting spinal cord extracts from WT mice 8 months after subpial injection of either AAV9 encoding a non-targeting (n=6 animals) or Stmn2 targeting shRNA (n=5 animals). β3-tubulin was used as loading control. AAV9-shRNA-mediated suppression of stathmin-2 protein levels was confirmed in all examined samples (e). (f-h) Quantification of the immunoblots in panels d,e. Statistics by two-sided, unpaired t-test. (i) Levels of phosphorylated neurofilament heavy (pNF-H) and medium (pNF-M) subunits analyzed by immunoblotting of spinal cord extracts from WT mice, 8 months after subpial AAV9 encoding a non-targeting or Stmn2 targeting shRNA. β3-tubulin was used as a loading control. (j,k) Quantification of the immunoblots from panel i. N=5 animals with AAV9-shControl and n=6 animals with AAV9-shStmn2 (j), and n=13 animals with AAV9-shControl and n=12 animals with AAV9-shStmn2, (P = 0.036) (k). Statistics by two-sided, unpaired t-test. All panels: Each data point represents an individual mouse. Error bars plotted as SEM. **, P < 0.01; *, P <0.05; ns, P >0.05.

Source data

Extended Data Fig. 4 Axonal shrinkage, collapse of neurofilament spacing, and tearing of myelin in sporadic ALS and C9-ALS.

Representative electron microscopy images of large caliber axon cross sections in the motor roots of postmortem human samples from healthy controls n = 2 (upper panel) and sporadic ALS (sALS, n=5) and C9orf72 ALS patients (C9 ALS, n=2) (lower panel). Increased magnification micrographs of the axoplasm showing altered spacing between neurofilament filaments is shown.

Extended Data Fig. 5 Reduced stathmin-2 levels by subpial injection alters sensory marker in lumbar spinal cord.

(a) Representative image of lumbar dorsal root ganglion 2 months after subpial injection into lumbar spinal cord and subsequent retrograde delivery of AAV9 expressing green fluorescent protein (GFP). (b-c) Size distribution of axonal diameter of sensory axons innervating the dorsal spinal cord (b), and axon numbers in the 4 μm to 8 μm diameter range in the L5 dorsal root (c). Statistical analysis by two-sided, two-way ANOVA and Sidak’s multiple comparison test. P values range from P = 0.0189 to P = 0.0028. N=4 animals with AAV9-shControl and n=3 animals with AAV9-shStmn2. (d-e) Quantification related to Fig. 4i,k of positive area for stathmin-2 (n=2 animals injected with AAV9-shControl and n=4 animals injected with AAV9-shStmn2, (P <0.0001) (d), and CGRP (e) in the dorsal spinal cord of age-matched non-injected naïve animals (n=5) or 8 months after subpial injection of AAV9 encoding either non-targeting sequence (n=4) or Stmn2 shRNA (n=4). P <0.0001. Statistical analysis by two-sided, Mann Whitney test (d) and Kruskal-Wallis nonparametric tests (e). All panels: Each data point represents an individual mouse. Error bars plotted as SEM. ****, P <0.0001; **, P < 0.01; *, P <0.05; ns, P >0.05.

Source data

Extended Data Fig. 6 Stathmin-2 related genes remain unchanged upon stathmin-2 loss.

(a) Diagram of genome editing design by CRISPR-Cas9-mediated excision of mouse Stmn2 exon 3 that leads to complete absence of stathmin-2 protein. (b) Ratios of mice expected, genotyped at birth (p0) and alive at weaning age (p21) from Stmn2+/- to Stmn2+/- crossing in C57/BL6J background. (c) Stathmin-2 protein quantification from the immunoblots in Fig. 5d normalized by GAPDH level. N=6 animals per Stmn2+/+ and Stmn2+/-; n=3 animals per Stmn2-/-. Statistical analysis by two-sided, one-way ANOVA post hoc Tukey’s multiple comparison test. * P = 0.0103; * P = 0.041; *** P = 0.0003. (d,e) Measurement of mouse Stmn-1, -3 and -4 mRNA levels extracted from 12-month-old cortex (d) and spinal cord (e) of Stmn2+/+, Stmn2+/- Stmn2-/- mice. Gapdh was used as an endogenous control gene. N=3 animals per genotype (d), and n= 3-5 per genotype (e). Statistical analysis by two-sided one-way ANOVA post hoc Tukey’s multiple comparisons test. (f) Stathmin-2 protein quantification from brain and spinal cord extract of Stmn2+/+, Stmn2+/+/huSTMN2 and Stmn2-/-/huSTMN2 (BAC line 9439) by immunoblotting. N=5 animals per genotype. (g) huSTMN2 transgene copy numbers measured in BAC transgenic lines 9439 and 9446. N=6 animals per genotype. (h) Stathmin-2 protein quantification from brain and spinal cord extract of Stmn2+/+, Stmn2+/+/huSTMN2 and in Stmn2-/-/huSTMN2 (BAC line 9446) by immunoblotting. N=6 animals per genotype. (f,h) Statistical analysis by two-sided, two-way ANOVA post hoc Tukey’s multiple comparisons test, (P <0.0001). All panels: Each data point represents an individual mouse. Bar graphs represent mean values. Error bars plotted as SEM. ****, P <0.0001; ***, P < 0.001; *, P <0.05; ns, P >0.05.

Source data

Extended Data Fig. 7 Absence of stathmin-2 results in motor deficits regardless of the genetic background.

(a) Compound muscle action potential (CMAP) measurements in gastrocnemius muscle of mice. Statistics by two-sided, one-way ANOVA post hoc Tukey’s multiple comparisons test. P = 0.0131; P = 0.0252 at 3 months; P = 0.0045. (b-c) Neurofilament light (NF-L) levels in serum at different time-points in Stmn2+/+, Stmn2+/- and Stmn2-/- mice in the C57/BL6J (b) and FVB (c) backgrounds. (d-e) Phosphorylated neurofilament heavy (pNF-H) levels in serum at different time-points in Stmn2+/+, Stmn2+/- and Stmn2-/- mice in the C57/BL6J (d) and FVB (e) backgrounds. (b-e) Statistics by two-sided, two-way ANOVA post hoc Tukey’s multiple comparison test. (f) Hindlimb clasping test of Stmn2+/+/Sarm1+/+, Stmn2+/+/Sarm1-/- and Stmn2-/-/Sarm1-/- mice in C57/BL6J background for 20 weeks. Statistics by two-sided, two-way ANOVA post hoc Tukey’s multiple comparison test. **P = 0.0018; **** P <0.0001 when comparing to Stmn2+/+/Sarm1+/+. ## P = 0.0069 when comparing between Stmn2+/+/Sarm1-/- and Stmn2-/-/Sarm1-/-. (g-h) Von Frey analysis for the sensory response in hindlimbs of Stmn2+/+, Stmn2+/- and Stmn2-/- mice in C57/BL6J background at 9 and 12 month of age, (P <0.0001) (g), and in FVB background at 6, 9 and 12 month of age. P value range from P = 0.0037 to P <0.0001 (h). Statistics by two-sided, one-way ANOVA Kruskal-Wallis with Dunn’s multiple comparison test. Number of animals used were n=28 for Stmn2+/+; n=30 for Stmn2+/- and n=32 for Stmn2-/- at 9 months, and n=29 for Stmn2+/+; n=30 for Stmn2+/- and n=13 for Stmn2-/- at 12 months (g). Number of animals used were n=24 for Stmn2+/+; n=23 for Stmn2+/- and n=20 for Stmn2-/- at 6 months and 9 months; n=23 for Stmn2+/+; n=23 for Stmn2+/- and n=14 for Stmn2-/- at 12 months (h). (i) Lumbar spinal cord dorsal section of Stmn2+/+, Stmn2+/- and Stmn2-/- mice immunostained for stathmin-2 (green), CGRP (magenta) and isolectin B4 (IB4) in blue. N=3 animals/genotype were imaged. (a,g,h) Each data point represents an individual mouse. All panels: Error bars plotted as SEM. ****, P <0.0001; ***, P < 0.001; **, P < 0.01; *, P <0.05; ns, P >0.05.

Source data

Extended Data Fig. 8 Absence of stathmin-2 alters neurofilament composition over time in mice spinal cords.

(a) Immunoblotting for phosphorylated neurofilament heavy (pNF-H), phosphorylated neurofilament medium (pNF-M), and neurofilament light (NF-L) analyzed on 3 and 12 months old Stmn2+/+, Stmn2+/- and Stmn2-/- mice lumbar spinal cord protein extracts. (b) Immunoblotting for neurofilaments medium (NF-M) and stathmin-2 from Stmn2+/+, Stmn2+/- and Stmn2-/- mice lumbar spinal cord protein extracts at 3 and compared to 12 months old. β3-tubulin was used as an endogenous protein loading control. Stathmin-2 levels of Stmn2+/+, Stmn2+/- and Stmn2-/- at ~21 kDa are also shown. (c-f) Quantifications from immunoblots for pNF-H (c), pNF-M (d), NF-L (e) and NF-M (f) are shown. N=3 animals per genotype were used for 3 months, and n=6 animals for Stmn2+/+ and Stmn2+/- and n=3 animals for Stmn2-/- were used for 12 months. β3-tubulin remained unchanged confirming amount of protein loading control. Statistical analysis by two-sided, unpaired t-test. Each data point represents an individual mouse. Error bars plotted as SEM. P = 0.0381 (c); P = 0.0486 (d); P = 0.0039 (f). *, P <0.05.

Source data

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Figs. 1, 2, 5, 7 and Extended Data Figs. 1–3, 8

Uncropped blots of Figs.1c, 2e, 5d, 7e,f,i,k and Extended Data Figs. 1e,f,i, 2d, 3d,e,i, 8a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Erauskin, J., Bravo-Hernandez, M., Presa, M. et al. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci 27, 34–47 (2024). https://doi.org/10.1038/s41593-023-01496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01496-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing