Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Skull bone marrow channels as immune gateways to the central nervous system

Abstract

Decades of research have characterized diverse immune cells surveilling the CNS. More recently, the discovery of osseous channels (so-called ‘skull channels’) connecting the meninges with the skull and vertebral bone marrow has revealed a new layer of complexity in our understanding of neuroimmune interactions. Here we discuss our current understanding of skull and vertebral bone marrow anatomy, its contribution of leukocytes to the meninges, and its surveillance of the CNS. We explore the role of this hematopoietic output on CNS health, focusing on the supply of immune cells during health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune landscape at the outer borders of the central nervous system.
Fig. 2: Skull and vertebral channels are bidirectional conduits.
Fig. 3: Skull bone marrow responds to central nervous system perturbations.

Similar content being viewed by others

References

  1. Vajkoczy, P., Laschinger, M. & Engelhardt, B. α4-integrin-VCAM-1 binding mediates G-protein–independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 108, 557–565 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Steinman, L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat. Rev. Drug Discov. 4, 510–518 (2005).

    CAS  PubMed  Google Scholar 

  3. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).

    CAS  PubMed  Google Scholar 

  4. Hove, H. V. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    PubMed  Google Scholar 

  5. Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature https://doi.org/10.1038/s41586-020-03116-4 (2021).

  8. Croese, T., Castellani, G. & Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nat Immunol. https://doi.org/10.1038/s41590-021-00994-2 (2021).

  9. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6, e29738 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    PubMed  Google Scholar 

  13. Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell https://doi.org/10.1016/j.cell.2020.12.040 (2021).

  15. Merlini, A. et al. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci. 25, 887–899 (2022).

    CAS  PubMed  Google Scholar 

  16. Li, Z. et al. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. Sci. Immunol. 8, eabq0375 (2023).

    CAS  PubMed  Google Scholar 

  17. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0301-3 (2018).

  19. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao, H. et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560, 55–60 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazzitelli, J. A. et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. https://doi.org/10.1038/s41593-022-01029-1 (2022).

  23. Pulous, F. E. et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat. Neurosci. 25, 567–576 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolabas, Z. I. et al. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 186, 3706–3725 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lachkar, S. et al. The diploic veins: a comprehensive review with clinical applications. Cureus 11, e4422 (2019).

    PubMed  Google Scholar 

  26. García-González, U. et al. The diploic venous system: surgical anatomy and neurosurgical implications. Neurosurg. Focus 27, E2 (2009).

    PubMed  Google Scholar 

  27. Alarfaj, A. et al. Magnetic resonance imaging analysis of human skull diploic venous anatomy. Surg. Neurol. Int. 12, 249 (2021).

    PubMed  PubMed Central  Google Scholar 

  28. Grüneboom, A. et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat. Metab. 1, 236–250 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285, 25103–25108 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y. et al. Early developing B cells undergo negative selection by central nervous system-specific antigens in themeninges. Immunity https://doi.org/10.1016/j.immuni.2021.09.016 (2021).

  31. Schafflick, D. et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. Neurosci. 24, 1225–1234 (2021).

    CAS  PubMed  Google Scholar 

  32. Niu, C. et al. Identification of hematopoietic stem cells residing in the meninges of adult mice at steady state. Cell Rep. 41, 111592 (2022).

    CAS  PubMed  Google Scholar 

  33. Ringstad, G. & Eide, P. K. Molecular trans-dural efflux to skull bone marrow in humans with cerebrospinal fluid disorders. Brain https://doi.org/10.1093/brain/awab388 (2021).

  34. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    CAS  PubMed  Google Scholar 

  35. Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao, X. et al. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589, 591–596 (2021).

    CAS  PubMed  Google Scholar 

  37. Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55 (1999).

    CAS  PubMed  Google Scholar 

  38. Russo, M. V., Latour, L. L. & McGavern, D. B. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat. Immunol. 19, 442–452 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mastorakos, P. et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat. Neurosci. 24, 245–258 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Salvador, A. F. M. & Kipnis, J. Immune response after central nervous system injury. Semin. Immunol. https://doi.org/10.1016/j.smim.2022.101629 (2022).

  41. Courties, G. et al. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ. Res. 116, 407–417 (2015).

    CAS  PubMed  Google Scholar 

  42. Hadjikhani, N. et al. Extra‐axial inflammatory signal in parameninges in migraine with visual aura. Ann. Neurol. 87, 939–949 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Klein, R. S. et al. Neuroinflammation during RNA viral infections. Annu. Rev. Immunol. 37, 73–95 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Murúa, S. R., Farez, M. F. & Quintana, F. J. The immune response in multiple sclerosis. Annu. Rev. Pathol. Mech. Dis. 17, 121–139 (2022).

    Google Scholar 

  45. Shi, K. et al. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell 185, 2234–2247 (2022).

    CAS  PubMed  Google Scholar 

  46. Giladi, A. et al. Cxcl10+ monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation. Nat. Immunol. 21, 525–534 (2020).

    CAS  PubMed  Google Scholar 

  47. Wilcox, J. A., Li, M. J. & Boire, A. A. Leptomeningeal metastases: new opportunities in the modern era. Neurotherapeutics https://doi.org/10.1007/s13311-022-01261-4 (2022).

  48. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Boire, A. et al. Complement component 3 adapts the cerebrospinal fluid for leptomeningeal metastasis. Cell 168, 1101–1113 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Quail, D. F. & Joyce, J. A. The microenvironmental landscape of brain tumors. Cancer Cell 31, 326–341 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, X. & Holtzman, D. M. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 55, 2236–2254 (2022).

    CAS  PubMed  Google Scholar 

  53. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Barthélemy, N. R. et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med. 26, 398–407 (2020).

    PubMed  PubMed Central  Google Scholar 

  55. Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Taipa, R. et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol. Aging 76, 125–132 (2019).

    CAS  PubMed  Google Scholar 

  57. Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 213, 667–675 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Reed-Geaghan, E. G., Croxford, A. L., Becher, B. & Landreth, G. E. Plaque-associated myeloid cells derive from resident microglia in an Alzheimer’s disease model. J. Exp. Med. 217, e20191374 (2020).

    PubMed  PubMed Central  Google Scholar 

  59. Silvin, A. et al. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 55, 1448–1465 (2022).

    CAS  PubMed  Google Scholar 

  60. Wu, X., Saito, T., Saido, T. C., Barron, A. M. & Ruedl, C. Microglia and CD206+ border-associated mouse macrophages maintain their embryonic origin during Alzheimer’s disease. Elife 10, e71879 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dvir-Szternfeld, R. et al. Alzheimer’s disease modification mediated by bone marrow-derived macrophages via a TREM2-independent pathway in mouse model of amyloidosis. Nat. Aging 2, 60–73 (2022).

    CAS  PubMed  Google Scholar 

  62. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gate, D. et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science https://doi.org/10.1126/science.abf7266 (2021).

  64. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Krishnarajah, S. et al. Single-cell profiling of immune system alterations in lymphoid, barrier and solid tissues in aged mice. Nat. Aging https://doi.org/10.1038/s43587-021-00148-x (2021).

  67. Helbling, P. M. et al. Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation. Cell Rep. 29, 3313–3330 (2019).

    CAS  PubMed  Google Scholar 

  68. Schürch, C. M., Riether, C. & Ochsenbein, A. F. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 14, 460–472 (2014).

    PubMed  Google Scholar 

  69. Yamashita, M. & Passegué, E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 25, 357–372 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Valletta, S. et al. Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing. Nat. Commun. 11, 4075 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaufmann, T. et al. Quantifying bone marrow adiposity and its genetic architecture from head MRI scans. Preprint at medRxiv https://doi.org/10.1101/2022.08.19.22278950 (2022).

  72. Christodoulou, C. et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578, 278–283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Vandoorne, K. et al. Imaging the vascular bone marrow niche during inflammatory stress. Circ. Res. 123, 415–427 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61–79 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pietras, E. M. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17, 35–46 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    CAS  PubMed  Google Scholar 

  78. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525 (2019).

    CAS  PubMed  Google Scholar 

  79. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    CAS  PubMed  Google Scholar 

  80. Yáñez, A. et al. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47, 890–902 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8, 1207–1216 (2007).

    CAS  PubMed  Google Scholar 

  82. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    CAS  PubMed  Google Scholar 

  83. McCracken, J. M. & Allen, L. -A. H. Regulation of human neutrophil apoptosis and lifespan in health and disease. J. Cell Death 7, 15–23 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA 96, 3120–3125 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Comazzetto, S., Shen, B. & Morrison, S. J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell 56, 1848–1860 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229–232 (2013).

    CAS  PubMed  Google Scholar 

  89. Yu, V. W. C. et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoetic stem cells. Cell 167, 1310–1322 (2016).

    CAS  PubMed  Google Scholar 

  90. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Triana, S. et al. Single-cell proteo-genomic reference maps of the hematopoietic system enable the purification and massive profiling of precisely defined cell states. Nat. Immunol. https://doi.org/10.1038/s41590-021-01059-0 (2021).

  93. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    CAS  PubMed  Google Scholar 

  96. de Sauvage, F. J et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369, 533–538 (1994).

    CAS  PubMed  Google Scholar 

  97. Inra, C. N. et al. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature 527, 466–471 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Keller, J. T., Marfurt, C. F., Dimlich, R. V. W. & Tierney, B. E. Sympathetic innervation of the supratentorial dura mater of the rat. J. Comp. Neurol. 290, 310–321 (1989).

    CAS  PubMed  Google Scholar 

  99. Li, L. et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. https://doi.org/10.1101/2023.01.29.526062 (2023).

  100. Hofmeijer, J. et al. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial (HAMLET)): a multicentre, open, randomised trial. Lancet Neurol. 8, 326–333 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by US federal funds from the National Institutes of Health (NS108419, NS127808, HL139598, HL142494, AT010416 and NS096967), a Cure Alzheimer’s Fund grant (Berg Brain Entry and Exit Consortium) and the BJC HealthCare Investigators Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Kipnis or Matthias Nahrendorf.

Ethics declarations

Competing interests

J.K. is a scientific advisor for Sana Biotechnology. M.N. has received funds or material research support from Alnylam, Biotronik, CSL Behring, GlycoMimetics, GSK, Medtronic, Novartis and Pfizer, as well as consulting fees from Biogen, Gimv, IFM Therapeutics, Molecular Imaging, Sigilon, Verseau Therapeutics and Bitterroot. The other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks David Hafler, Gerd Meyer zu Hörste, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzitelli, J.A., Pulous, F.E., Smyth, L.C.D. et al. Skull bone marrow channels as immune gateways to the central nervous system. Nat Neurosci 26, 2052–2062 (2023). https://doi.org/10.1038/s41593-023-01487-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01487-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing