Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural patterns differentiate traumatic from sad autobiographical memories in PTSD

Abstract

For people with post-traumatic stress disorder (PTSD), recall of traumatic memories often displays as intrusions that differ profoundly from processing of ‘regular’ negative memories. These mnemonic features fueled theories speculating a unique cognitive state linked with traumatic memories. Yet, to date, little empirical evidence supports this view. Here we examined neural activity of patients with PTSD who were listening to narratives depicting their own memories. An intersubject representational similarity analysis of cross-subject semantic content and neural patterns revealed a differentiation in hippocampal representation by narrative type: semantically similar, sad autobiographical memories elicited similar neural representations across participants. By contrast, within the same individuals, semantically similar trauma memories were not represented similarly. Furthermore, we were able to decode memory type from hippocampal multivoxel patterns. Finally, individual symptom severity modulated semantic representation of the traumatic narratives in the posterior cingulate cortex. Taken together, these findings suggest that traumatic memories are an alternative cognitive entity that deviates from memory per se.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental paradigm and semantic analysis framework.
Fig. 2: Semantic similarity across script types.
Fig. 3: Semantic-to-neural similarity analysis of hippocampal patterns.
Fig. 4: Memory type can be decoded from hippocampal patterns.
Fig. 5: Symptom severity modulates PCC representation of PTSD memory.

Similar content being viewed by others

Data availability

Data supporting the findings of this present study are deposited at https://osf.io/dc7jb. The Harvard–Oxford atlas is available at https://neurovault.org/collections/262. The Willard atlas is available at https://pyhrf.github.io/manual/parcellation_mask.html. The set of analyses described in the present study was not preregistered.

Code availability

The scripts used for data analysis are available at https://osf.io/dc7jb. The fMRI preprocessing was done in fMRIPrep and analyses were conducted primarily in MATLAB R2018b, R2020a and R2021a (MathWorks).

References

  1. Weathers, F. W. et al. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): development and initial psychometric evaluation in military veterans. Psychol. Assess. 30, 383–395 (2018).

    PubMed  Google Scholar 

  2. Stevens, J. S. et al. Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J. Psychiatr. Res 47, 1469–1478 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Davachi, L. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol. 16, 693–700 (2006).

    CAS  PubMed  Google Scholar 

  4. Ranganath, C. Binding items and contexts: the cognitive neuroscience of episodic memory. Curr. Dir. Psychol. Sci. 19, 131–137 (2010).

    Google Scholar 

  5. Ekstrom, A. D. & Ranganath, C. Space, time, and episodic memory: the hippocampus is all over the cognitive map. Hippocampus 28, 680–687 (2018).

    PubMed  Google Scholar 

  6. Milivojevic, B., Varadinov, M., Grabovetsky, A. V., Collin, S. H. P. & Doeller, C. F. Coding of event nodes and narrative context in the hippocampus. J. Neurosci. 36, 12412–12424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohn-Sheehy, B. I. et al. The hippocampus constructs narrative memories across distant events. Curr. Biol. 31, 4935–4945.e7 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Squire, L. R. & Wixted, J. T. The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34, 259–288 (2011).

  9. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev. Psychol. 67, 105–134 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

  11. Karl, A. et al. A meta-analysis of structural brain abnormalities in PTSD. Neurosci. Biobehav. Rev. 30, 1004–1031 (2006).

    PubMed  Google Scholar 

  12. Jin, C. et al. Abnormalities in whole-brain functional connectivity observed in treatment-naive post-traumatic stress disorder patients following an earthquake. Psychol. Med. 44, 1927–1936 (2014).

    CAS  PubMed  Google Scholar 

  13. Miller, D. R. et al. Default mode network subsystems are differentially disrupted in posttraumatic stress disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 363–371 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Elzinga, B. M. & Bremner, J. D. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? J. Affect. Disord. 70, 1–17 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brewin, C. R., Gregory, J. D., Lipton, M. & Burgess, N. Intrusive images in psychological disorders: characteristics, neural mechanisms, and treatment implications. Psychol. Rev. 117, 210–232 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Joshi, S. A., Duval, E. R., Kubat, B. & Liberzon, I. A review of hippocampal activation in post-traumatic stress disorder. Psychophysiology 57, e13357 (2020).

  17. Cahill, L., Babinsky, R., Markowitsch, H. J. & McGaugh, J. L. The amygdala and emotional memory. Nature 377, 295–296 (1995).

    CAS  PubMed  Google Scholar 

  18. Liberzon, I. & Sripada, C. S. The functional neuroanatomy of PTSD: a critical review. Prog. Brain Res. 167, 151–169 (2007).

    Google Scholar 

  19. Rauch, S. L. et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol. Psychiatry 47, 769–776 (2000).

    CAS  PubMed  Google Scholar 

  20. Rauch, S. L. et al. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch. Gen. Psychiatry 53, 380–387 (1996).

    CAS  PubMed  Google Scholar 

  21. Shin, L. M. et al. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female vietnam veterans with PTSD. Arch. Gen. Psychiatry 61, 168–176 (2004).

    PubMed  Google Scholar 

  22. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

  23. Kensinger, E. A. & Corkin, S. Two routes to emotional memory: distinct neural processes for valence and arousal. Proc. Natl Acad. Sci. USA 101, 3310–3315 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Phelps, E. A. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr. Opin. Neurobiol. 14, 198–202 (2004).

    CAS  PubMed  Google Scholar 

  25. Fanselow, M. S. & LeDoux, J. E. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23, 229–232 (1999).

    CAS  PubMed  Google Scholar 

  26. Blair, H. T. & Fanselow, M. S. in Space, Time and Memory in the Hippocampal Formation (eds Derdikman, D. & Knierim, J. J.) 465–496 (Springer Vienna, 2014).

  27. Davis, P. & Reijmers, L. G. The dynamic nature of fear engrams in the basolateral amygdala. Brain Res. Bull. 141, 44–49 (2018).

    PubMed  Google Scholar 

  28. Brewin, C. R. Re-experiencing traumatic events in PTSD: new avenues in research on intrusive memories and flashbacks. Eur. J. Psychotraumatol. 6, 27180 (2015).

    PubMed  Google Scholar 

  29. Rahman, N. & Brown, A. D. Mental time travel in post-traumatic stress disorder: current gaps and future directions. Front. Psychol. 12, 624707 (2021).

  30. Rubin, D. C., Boals, A. & Berntsen, D. Memory in posttraumatic stress disorder: properties of voluntary and involuntary, traumatic and nontraumatic autobiographical memories in people with and without posttraumatic stress disorder symptoms. J. Exp. Psychol. Gen. 137, 591–614 (2008).

    PubMed  PubMed Central  Google Scholar 

  31. Brewin, C. R. Coherence, disorganization, and fragmentation in traumatic memory reconsidered: a response to Rubin et al. (2016). J. Abnorm. Psychol. 125, 1011–1017 (2016).

    PubMed  Google Scholar 

  32. Foa, E. B., Molnar, C. & Cashman, L. Change in rape narratives during exposure therapy for posttraumatic stress disorder. J. Trauma Stress 8, 675–690 (1995).

    CAS  PubMed  Google Scholar 

  33. Yeshurun, Y., Nguyen, M. & Hasson, U. The default mode network: where the idiosyncratic self meets the shared social world. Nat. Rev. Neurosci. 22, 181–192 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Andrews-Hanna, J. R., Saxe, R. & Yarkoni, T. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage 91, 324–335 (2014).

    PubMed  Google Scholar 

  35. Golland, Y. et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb. Cortex 17, 766–777 (2007).

    PubMed  Google Scholar 

  36. Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sambuco, N., Bradley, M. M. & Lang, P. J. Narrative imagery: emotional modulation in the default mode network. Neuropsychologia 164, 108087 (2022).

    PubMed  Google Scholar 

  38. Akiki, T. J., Averill, C. L. & Abdallah, C. G. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Curr. Psychiatry Rep. https://doi.org/10.1007/s11920-017-0840-4 (2017).

  39. Koch, S. B. J. et al. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depress. Anxiety 33, 592–605 (2016).

  40. Boccia, M. et al. Different neural modifications underpin PTSD after different traumatic events: an fMRI meta-analytic study. Brain Imaging Behav. 10, 226–237 (2016).

    PubMed  Google Scholar 

  41. Kozlowski, A. C., Taddy, M. & Evans, J. A. The geometry of culture: analyzing the meanings of class through word embeddings. Am. Sociol. Rev. 84, 905–949 (2019).

    Google Scholar 

  42. Van Uden, C. E. et al. Modeling semantic encoding in a common neural representational space. Front. Neurosci. 12, 437 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y., Han, K., Worth, R. & Liu, Z. Connecting concepts in the brain by mapping cortical representations of semantic relations. Nat. Commun. 11, 1877 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Solomon, E. A., Lega, B. C., Sperling, M. R. & Kahana, M. J. Hippocampal theta codes for distances in semantic and temporal spaces. Proc. Natl Acad. Sci. USA 116, 24343–24352 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at https://arxiv.org/abs/1301.3781 (2013).

  46. Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS  PubMed  Google Scholar 

  47. Nummenmaa, L. et al. Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks. NeuroImage 102, 498–509 (2014).

    PubMed  Google Scholar 

  48. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014).

    CAS  PubMed  Google Scholar 

  49. Poppenk, J., Evensmoen, H. R., Moscovitch, M. & Nadel, L. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17, 230–240 (2013).

    PubMed  Google Scholar 

  50. Abdallah, C. G. et al. Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach. Transl. Psychiatry 7, e1045–e1047 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Malivoire, B. L., Girard, T. A., Patel, R. & Monson, C. M. Functional connectivity of hippocampal subregions in PTSD: relations with symptoms. BMC Psychiatry 18, 129 (2018).

  52. Satpute, A. B., Mumford, J. A., Naliboff, B. D. & Poldrack, R. A. Human anterior and posterior hippocampus respond distinctly to state and trait anxiety. Emotion 12, 58–68 (2012).

    PubMed  Google Scholar 

  53. Lanius, R. A. et al. The nature of traumatic memories: a 4-T fMRI functional connectivity analysis. Am. J. Psychiatry 161, 36–44 (2004).

    PubMed  Google Scholar 

  54. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    CAS  PubMed  Google Scholar 

  55. Viganò, S. & Piazza, M. Distance and direction codes underlie navigation of a novel semantic space in the human brain. J. Neurosci. 40, 2727–2736 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. Morton, N. W., Zippi, E. L., Noh, S. M. & Preston, A. R. Semantic knowledge of famous people and places is represented in hippocampus and distinct cortical networks. J. Neurosci. 41, 2762–2779 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brunec, I. K., Robin, J., Olsen, R. K., Moscovitch, M. & Barense, M. D. Integration and differentiation of hippocampal memory traces. Neurosci. Biobehav. Rev. 118, 196–208 (2020).

    PubMed  Google Scholar 

  58. Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8, 976–987 (2007).

    CAS  PubMed  Google Scholar 

  60. Kim, B., Andrews-Hanna, J. R., Han, J., Lee, E. & Woo, C.-W. When self comes to a wandering mind: brain representations and dynamics of self-generated concepts in spontaneous thought. Sci. Adv. 8, eabn8616 (2022).

    PubMed Central  Google Scholar 

  61. Anderson, M. C. et al. Neural systems underlying the suppression of unwanted memories. Science 303, 232–235 (2004).

    CAS  PubMed  Google Scholar 

  62. Anderson, M. C. & Levy, B. J. Suppressing unwanted memories. Curr. Dir. Psychol. Sci. 18, 189–194 (2009).

    Google Scholar 

  63. Bedard-Gilligan, M., Zoellner, L. A. & Feeny, N. C. Is trauma memory special? Trauma narrative fragmentation in ptsd: effects of treatment and response. Clin. Psychol. Sci. 5, 212–225 (2018).

  64. Duek, O. et al. Long term structural and functional neural changes following a single infusion of ketamine in PTSD. Neuropsychopharmacology https://doi.org/10.1038/s41386-023-01606-3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. First, M. B. & Gibbon, M. in Comprehensive Handbook of Psychological Assessment, Vol. 2: Personality Assessment (eds Hilsenroth, M. J. & Segal, D. L.) 134–143 (Wiley, 2004).

  66. Lang, P. J., Levin, D. N., Miller, G. A. & Kozak, M. J. Fear behavior, fear imagery, and the psychophysiology of emotion: the problem of affective response integration. J. Abnorm. Psychol. 92, 276–306 (1983).

    CAS  PubMed  Google Scholar 

  67. Pitman, R. K., Orr, S. P., Forgue, D. F., de Jong, J. B. & Claiborn, J. M. Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Arch. Gen. Psychiatry 44, 970–975 (1987).

    CAS  PubMed  Google Scholar 

  68. Orr, S. P., Metzger, L. J. & Pitman, R. K. Psychophysiology of post-traumatic stress disorder. Psychiatr. Clin. North Am. 25, 271–293 (2002).

    PubMed  Google Scholar 

  69. Brunet, A. et al. Trauma reactivation plus propranolol is associated with durably low physiological responding during subsequent script-driven traumatic imagery. Can. J. Psychiatry 59, 228–232 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Hoge, E. A. et al. Effect of acute posttrauma propranolol on PTSD outcome and physiological responses during script-driven imagery. CNS Neurosci. Ther. 18, 21–27 (2012).

    CAS  PubMed  Google Scholar 

  71. Sinha, R. et al. Enhanced negative emotion and alcohol craving, and altered physiological responses following stress and cue exposure in alcohol dependent individuals. Neuropsychopharmacology 34, 1198–1208 (2009).

    CAS  PubMed  Google Scholar 

  72. Vodrahalli, K. et al. Mapping between fMRI responses to movies and their natural language annotations. NeuroImage 180, 223–231 (2018).

    PubMed  Google Scholar 

  73. Nguyen, M., Vanderwal, T. & Hasson, U. Shared understanding of narratives is correlated with shared neural responses. NeuroImage 184, 161–170 (2019).

    PubMed  Google Scholar 

  74. Dimsdale-Zucker, H. R. & Ranganath, C. Representational similarity analyses: a practical guide for functional MRI applications. Handb. Behav. Neurosci. 28, 509–525 (2018).

    Google Scholar 

  75. Brysbaert, M., Warriner, A. B. & Kuperman, V. Concreteness ratings for 40 thousand generally known English word lemmas. Behav. Res Methods 46, 904–911 (2014).

    PubMed  Google Scholar 

  76. Scott, G. G., Keitel, A., Becirspahic, M., Yao, B. & Sereno, S. C. Glasgow norms: ratings of 5,500 words on nine scales. Behav. Res. Methods 51, 1258–1270 (2019).

  77. Mohammad, S. M. Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 English words. In Proc. 56th Annual Meeting of the Association of Computational Linguistics (Vol. 1, Long Papers) 1, 174–184 (2018).

  78. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

  79. Esteban, O. et al. poldracklab/fmriprep: 1.0.0-rc5. Zenodo https://doi.org/10.5281/zenodo.996169 (2017).

  80. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).

    PubMed  Google Scholar 

  81. Deuker, L., Bellmund, J. L., Navarro Schröder, T. & Doeller, C. F. An event map of memory space in the hippocampus. eLife 5, e16534 (2016).

  82. Op de Beeck, H. P. Against hyperacuity in brain reading: spatial smoothing does not hurt multivariate fMRI analyses? NeuroImage 49, 1943–1948 (2010).

    PubMed  Google Scholar 

  83. Ben-Yakov, A. & Henson, R. N. The hippocampal film editor: sensitivity and specificity to event boundaries in continuous experience. J. Neurosci. 38, 10057–10068 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, J. et al. Accessing real-life episodic information from minutes versus hours earlier modulates hippocampal and high-order cortical dynamics. Cereb. Cortex 26, 3428–3441 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yeshurun, Y. et al. Same story, different story: the neural representation of interpretive frameworks. Psychol. Sci. 28, 307–319 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Finn, E. S. et al. Idiosynchrony: from shared responses to individual differences during naturalistic neuroimaging. NeuroImage 215, 116828 (2020).

    PubMed  Google Scholar 

  87. Rhoads, S. A. et al. Mapping neural activity patterns to contextualized fearful facial expressions onto callous-unemotional (CU) traits: intersubject representational similarity analysis reveals less variation among high-CU adolescents. Personal. Neurosci. 3, e12 (2020).

    PubMed  PubMed Central  Google Scholar 

  88. Chen, P. H. A., Jolly, E., Cheong, J. H. & Chang, L. J. Intersubject representational similarity analysis reveals individual variations in affective experience when watching erotic movies. NeuroImage 216, 116851 (2020).

    PubMed  Google Scholar 

  89. Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980).

    Google Scholar 

  90. Gliner, J. A., Leech, N. L. & Morgan, G. A. Problems with null hypothesis significance testing (NHST): what do the textbooks say? J. Exp. Educ. 71, 83–92 (2002).

    Google Scholar 

  91. Jeffreys, H. The Theory of Probability (Oxford Univ. Press, 1998).

  92. Oganian, Y. & Chang, E. F. A speech envelope landmark for syllable encoding in human superior temporal gyrus. Sci. Adv. 5, eaay6279 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158–165 (2012).

    CAS  PubMed  Google Scholar 

  94. Chen, J. et al. Shared memories reveal shared structure in neural activity across individuals. Nat. Neurosci. 20, 115–125 (2017).

    CAS  PubMed  Google Scholar 

  95. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    CAS  PubMed  Google Scholar 

  96. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

    CAS  PubMed  Google Scholar 

  99. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    CAS  PubMed  Google Scholar 

  100. Fonov, V. et al. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54, 313–327 (2011).

    PubMed  Google Scholar 

  101. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    CAS  PubMed  Google Scholar 

  102. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).

    PubMed  Google Scholar 

  103. Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR Biomed. 10, 171–178 (1997).

    CAS  PubMed  Google Scholar 

  104. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

    PubMed  Google Scholar 

  105. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341 (2014).

    PubMed  Google Scholar 

  106. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007).

  107. Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64, 240–256 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Orederu and Y. Yeshurun for helpful discussions. We also thank A. Ben Yakov and A. Ravia for their advice on analysis and preprocessing. The main source of funding for the present study was provided by: Independent Investigator Grant (no. 23260) from the Brain and Behavior Research Foundation (Institute of Human Relations (IHR)), Clinical Neurosciences Division of the National Center for PTSD (IHR), a private donation from the American Brain Society (IHR) and the Yale Center for Clinical Investigation, supported by a CTSA grant from the National Center for Advancing Translational Science, a component of the National Institutes of Health (NIH). Funding was also provided by the NIH (grant nos. R01MH122611 and R01MH123069) and The Ream Foundation to D.S. The contents of the manuscript are solely the responsibility of the authors and do not necessarily represent the official view of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

O.P. conceptualized analyses, conducted and interpreted analyses and visualization, wrote the original draft and edited the paper. O.D. collected data, interpreted data analyses and edited the final paper. K.R.K. analyzed the data. C.G. collected data. J.H.K. obtained funding and edited the final paper. I.L. designed the study, interpreted data analyses and cowrote the paper. I.H.R. designed the study, obtained funding, collected data, interpreted the data analyses and cowrote the paper. D.S. conceptualized analyses, interpreted analyses, obtained funding, wrote the original draft and edited the paper.

Corresponding authors

Correspondence to Ilan Harpaz-Rotem or Daniela Schiller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Choong-Wan Woo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Tables 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perl, O., Duek, O., Kulkarni, K.R. et al. Neural patterns differentiate traumatic from sad autobiographical memories in PTSD. Nat Neurosci 26, 2226–2236 (2023). https://doi.org/10.1038/s41593-023-01483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01483-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing