Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interoceptive rhythms in the brain

Abstract

Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, interoception should not be viewed as an isolated domain, as it interacts with exteroception, cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory and gastric rhythms, we review evidence that interoception is anatomically and functionally intertwined with the processing of signals from the external environment. Interactions arise at all stages, from the peripheral transduction of interoceptive signals to sensory processing and cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive rhythms contribute to functions ranging from perceptual detection up to sense of self, or conversely compete with external inputs. Renewed interest in interoception revives long-standing issues on how the brain integrates and coordinates information in distributed regions, by means of oscillatory synchrony, predictive coding or multisensory integration. Considering interoception and exteroception in the same framework paves the way for biological modes of information processing specific to living organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardiac, respiratory and gastric rhythms generation and mechanosensory signaling: core interoceptive pathways and somatosensory, proprioceptive, vascular and olfactory pathways.
Fig. 2: Measuring cardiac, respiratory and gastric interoception.
Fig. 3: Bodily rhythms in the brain: an extensive network.
Fig. 4: Bodily rhythms in the brain: candidate mechanisms.

Similar content being viewed by others

References

  1. Sherrington, C. S. The Integrative Action of the Nervous System (Yale University Press, 1906).

  2. Khalsa, S. S. et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513 (2018).

    PubMed  Google Scholar 

  3. Petzschner, F. H., Critchley, H. & Tallon-Baudry, C. Interoception. Scholarpedia https://doi.org/10.4249/scholarpedia.55569 (2022).

  4. Berntson, G. G. & Khalsa, S. S. Neural circuits of interoception. Trends Neurosci. 44, 17–28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, W. G. et al. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44, 3–16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rinaman, L. & Schwartz, G. Anterograde transneuronal viral tracing of central viscerosensory pathways in rats. J. Neurosci. 24, 2782–2786 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saper, C. B. & Loewy, A. D. Efferent connections of the parabrachial nucleus in the rat. Brain Res. 197, 291–317 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Cechetto, D. F. & Saper, C. B. Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J. Comp. Neurol. 262, 27–45 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Penzo, M. A. & Gao, C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci. 44, 538–549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grady, F., Peltekian, L., Iverson, G. & Geerling, J. C. Direct parabrachial-cortical connectivity. Cereb. Cortex 30, 4811–4833 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dum, R. P., Levinthal, D. J. & Strick, P. L. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29, 14223–14235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amassian, V. E. Cortical representation of visceral afferents. J. Neurophysiol. 14, 433–444 (1951).

    Article  CAS  PubMed  Google Scholar 

  14. Bronk, D. W. & Stella, G. Afferent impulses in the carotid sinus nerve I. The relation of the discharge from single end organs to arterial blood pressure. J. Cell Comp. Physiol. 1, 113–130 (1932).

    Article  Google Scholar 

  15. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53, 159–227 (1973).

    Article  CAS  PubMed  Google Scholar 

  16. Dampney, R. A., Polson, J. W., Potts, P. D., Hirooka, Y. & Horiuchi, J. Functional organization of brain pathways subserving the baroreceptor reflex: studies in conscious animals using immediate early gene expression. Cell Mol. Neurobiol. 23, 597–616 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Berntson, G. G., Quigley, K. S. & Lozano, D. in Handbook of Psychophysiology (eds. J. T. Cacioppo et al.) 898 (Cambridge University Press, 2007).

  18. Bishop, V. S., Malliani, A. & Thoren, P. in Handbook of Physiology, Section 2: The Cardiovascular System Vol. III (eds. J. T. Shepherd & F. M. Abboud) 497–555 (Waverly Press, 1983).

  19. Birznieks, I., Boonstra, T. W. & Macefield, V. G. Modulation of human muscle spindle discharge by arterial pulsations - functional effects and consequences. PLoS ONE 7, e35091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ford, T. W. & Kirkwood, P. A. Cardiac modulation of alpha motoneuron discharges. J. Neurophysiol. 119, 1723–1730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macefield, V. G. Cardiovascular and respiratory modulation of tactile afferents in the human finger pad. Exp. Physiol. 88, 617–625 (2003).

    Article  PubMed  Google Scholar 

  22. Kim, K. J., Ramiro Diaz, J., Iddings, J. A. & Filosa, J. A. Vasculo-neuronal coupling: retrograde vascular communication to brain neurons. J. Neurosci. 36, 12624–12639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marina, N. et al. Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nature Commun. https://doi.org/10.1038/s41467-019-13956-y (2020).

  24. Wang, J. & Hamill, O. P. Piezo2-peripheral baroreceptor channel expressed in select neurons of the mouse brain: a putative mechanism for synchronizing neural networks by transducing intracranial pressure pulses. J. Integr. Neurosci. 20, 825–837 (2021).

    Article  PubMed  Google Scholar 

  25. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore, C. I. & Cao, R. The hemo-neural hypothesis: on the role of blood flow in information processing. J. Neurophysiol. 99, 2035–2047 (2008).

    Article  PubMed  Google Scholar 

  27. Beissner, F., Meissner, K., Bar, K. J. & Napadow, V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, K. et al. Resting-state neural firing rate is linked to cardiac cycle duration in the human cingulate and parahippocampal cortices. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2291-18.2019 (2019).

  29. Vila, J. et al. Cardiac defense: from attention to action. Int. J. Psychophysiol. 66, 169–182 (2007).

    Article  PubMed  Google Scholar 

  30. Klein, A. S., Dolensek, N., Weiand, C. & Gogolla, N. Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 374, 1010–1015 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Lacey, B. C. & Lacey, J. I. Presidential address, 1979. Cognitive modulation of time-dependent primary bradycardia. Psychophysiology 17, 209–221 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Crone, E. A., Bunge, S. A., de Klerk, P. & van der Molen, M. W. Cardiac concomitants of performance monitoring: context dependence and individual differences. Brain Res. Cogn. Brain Res. 23, 93–106 (2005).

    Article  PubMed  Google Scholar 

  33. Park, H. D., Correia, S., Ducorps, A. & Tallon-Baudry, C. Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat. Neurosci. 17, 612–618 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Raimondo, F. et al. Brain-heart interactions reveal consciousness in noncommunicating patients. Ann. Neurol. 82, 578–591 (2017).

    Article  PubMed  Google Scholar 

  35. Motyka, P. et al. Interactions between cardiac activity and conscious somatosensory perception. Psychophysiology 56, e13424 (2019).

    Article  PubMed  Google Scholar 

  36. Grund, M. et al. Respiration, heartbeat, and conscious tactile perception. J. Neurosci. 42, 643–656 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banellis, L. & Cruse, D. Skipping a beat: heartbeat-evoked potentials reflect predictions during interoceptive-exteroceptive integration. Cereb. Cortex Commun. 1, tgaa060 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marshall, A. C., Gentsch-Ebrahimzadeh, A. & Schütz-Bosbach, S. From the inside out: interoceptive feedback facilitates the integration of visceral signals for efficient sensory processing. Neuroimage 251, 119011 (2022).

    Article  PubMed  Google Scholar 

  39. van Elk, M., Lenggenhager, B., Heydrich, L. & Blanke, O. Suppression of the auditory N1-component for heartbeat-related sounds reflects interoceptive predictive coding. Biol. Psychol. 99, 172–182 (2014).

    Article  PubMed  Google Scholar 

  40. Salomon, R. et al. The insula mediates access to awareness of visual stimuli presented synchronously to the heartbeat. J. Neurosci. 36, 5115–5127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maister, L., Tang, T. & Tsakiris, M. Neurobehavioral evidence of interoceptive sensitivity in early infancy. Elife 6, e25318 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Charbonneau, J. A., Maister, L., Tsakiris, M. & Bliss-Moreau, E. Rhesus monkeys have an interoceptive sense of their beating hearts. Proc. Natl Acad. Sci. USA 119, e2119868119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suzuki, K., Garfinkel, S. N., Critchley, H. D. & Seth, A. K. Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia 51, 2909–2917 (2013).

    Article  PubMed  Google Scholar 

  44. Sel, A., Azevedo, R. T. & Tsakiris, M. Heartfelt self: cardio-visual integration affects self-face recognition and interoceptive cortical processing. Cereb. Cortex 27, 5144–5155 (2017).

    PubMed  Google Scholar 

  45. Aspell, J. E. et al. Turning body and self inside out: visualized heartbeats alter bodily self-consciousness and tactile perception. Psychol. Sci. 24, 2445–2453 (2013).

    Article  PubMed  Google Scholar 

  46. Seth, A. K., Suzuki, K. & Critchley, H. D. An interoceptive predictive coding model of conscious presence. Front. Psychol. 2, 395 (2011).

    PubMed  Google Scholar 

  47. Park, H. D. & Tallon-Baudry, C. The neural subjective frame: from bodily signals to perceptual consciousness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130208 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Park, H. D. & Blanke, O. Coupling inner and outer body for self-consciousness. Trends Cogn. Sci. 23, 377–388 (2019).

    Article  PubMed  Google Scholar 

  49. Azzalini, D., Rebollo, I. & Tallon-Baudry, C. Visceral signals shape brain dynamics and cognition. Trends Cogn. Sci. 23, 488–509 (2019).

    Article  PubMed  Google Scholar 

  50. Koch, E. Die irradiation der pressoreceptorischen kreislaufreflexe. Klinische Wochenschr. 11, 225–227 (1932).

    Article  Google Scholar 

  51. Bonvallet, M., Dell, P. & Hiebel, G. Tonus sympathique et activité électrique corticale. Electroencephalogr. Clin. Neurophysiol. 6, 119–144 (1954).

    Article  CAS  PubMed  Google Scholar 

  52. Persson, B. & Svensson, T. H. Control of behaviour and brain noradrenaline neurons by peripheral blood volume receptors. J. Neural Transm. 52, 73–82 (1981).

    Article  CAS  PubMed  Google Scholar 

  53. Dworkin, B. R. et al. Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perception. Proc. Natl Acad. Sci. USA 91, 6329–6333 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilkinson, M., McIntyre, D. & Edwards, L. Electrocutaneous pain thresholds are higher during systole than diastole. Biol. Psychol. 94, 71–73 (2013).

    Article  PubMed  Google Scholar 

  55. Edwards, L., Ring, C., McIntyre, D. & Carroll, D. Modulation of the human nociceptive flexion reflex across the cardiac cycle. Psychophysiology 38, 712–718 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Edwards, L., McIntyre, D., Carroll, D., Ring, C. & Martin, U. The human nociceptive flexion reflex threshold is higher during systole than diastole. Psychophysiology 39, 678–681 (2002).

    Article  PubMed  Google Scholar 

  57. Skora, L. I., Livermore, J. J. A. & Roelofs, K. The functional role of cardiac activity in perception and action. Neurosci. Biobehav. Rev. 137, 104655 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Al, E. et al. Heart-brain interactions shape somatosensory perception and evoked potentials. Proc. Natl Acad. Sci. USA 117, 10575–10584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Al, E., Iliopoulos, F., Nikulin, V. V. & Villringer, A. Heartbeat and somatosensory perception. Neuroimage 238, 118247 (2021).

    Article  PubMed  Google Scholar 

  60. Saxon, S. A. Detection of near threshold signals during four phases of cardiac cycle. Ala. J. Med. Sci. 7, 427–430 (1970).

    CAS  PubMed  Google Scholar 

  61. Schulz, A. et al. Cardiac modulation of startle: effects on eye blink and higher cognitive processing. Brain Cogn. 71, 265–271 (2009).

    Article  PubMed  Google Scholar 

  62. Schulz, A. et al. Cardiac cycle phases affect auditory-evoked potentials, startle eye blink and pre-motor reaction times in response to acoustic startle stimuli. Int. J. Psychophysiol. 157, 70–81 (2020).

    Article  PubMed  Google Scholar 

  63. Cohen, R., Lieb, H. & Rist, F. Loudness judgments, evoked-potentials, and reaction-time to acoustic stimuli early and late in the cardiac cycle in chronic-schizophrenics. Psychiatry Res. 3, 23–29 (1980).

    Article  CAS  PubMed  Google Scholar 

  64. Delfini, L. F. & Campos, J. J. Signal detection and the ‘cardiac arousal cycle’. Psychophysiology 9, 484–491 (1972).

    Article  CAS  PubMed  Google Scholar 

  65. Velden, M. & Juris, M. Perceptual performance as a function of intra-cycle cardiac activity. Psychophysiology 12, 685–692 (1975).

    Article  CAS  PubMed  Google Scholar 

  66. Elliott, R. & Graf, V. Visual sensitivity as a function of phase of cardiac cycle. Psychophysiology 9, 357–361 (1972).

    Article  CAS  PubMed  Google Scholar 

  67. Sandman, C. A., Mccanne, T. R., Kaiser, D. N. & Diamond, B. Heart-rate and cardiac phase influences on visual-perception. J. Comp. Physiol. Psych. 91, 189–202 (1977).

    Article  CAS  Google Scholar 

  68. Ohl, S., Wohltat, C., Kliegl, R., Pollatos, O. & Engbert, R. Microsaccades are coupled to heartbeat. J. Neurosci. 36, 1237–1241 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Galvez-Pol, A., McConnell, R. & Kilner, J. M. Active sampling in visual search is coupled to the cardiac cycle. Cognition 196, 104149 (2020).

    Article  PubMed  Google Scholar 

  70. Kunzendorf, S. et al. Active information sampling varies across the cardiac cycle. Psychophysiology https://doi.org/10.1111/psyp.13322 (2019).

  71. Palser, E. R., Glass, J., Fotopoulou, A. & Kilner, J. M. Relationship between cardiac cycle and the timing of actions during action execution and observation. Cognition 217, 104907 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Konttinen, N., Mets, T., Lyytinen, H. & Paananen, M. Timing of triggering in relation to the cardiac cycle in nonelite rifle shooters. Res. Q. Exerc. Sport 74, 395–400 (2003).

    Article  PubMed  Google Scholar 

  73. Helin, P., Sihvonen, T. & Hänninen, O. Timing of triggering action of shooting in relation to the cardiac cycle. Br. J. Sports Med. 21, 33–36 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Herman, A. M. & Tsakiris, M. Feeling in control: the role of cardiac timing in the sense of agency. Affect. Sci. 1, 155–171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Park, H. D. et al. Breathing is coupled with voluntary action and the cortical readiness potential. Nat. Commun. 11, 289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gray, M. A., Minati, L., Paoletti, G. & Critchley, H. D. Baroreceptor activation attenuates attentional effects on pain-evoked potentials. Pain 151, 853–861 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schandry, R. & Montoya, P. Event-related brain potentials and the processing of cardiac activity. Biol. Psychol. 42, 75–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Gray, M. A. et al. A cortical potential reflecting cardiac function. Proc. Natl Acad. Sci. USA 104, 6818–6823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Park, H. D. & Blanke, O. Heartbeat-evoked cortical responses: underlying mechanisms, functional roles, and methodological considerations. Neuroimage 197, 502–511 (2019).

    Article  PubMed  Google Scholar 

  80. Buot, A., Azzalini, D., Chaumon, M. & Tallon-Baudry, C. Does stroke volume influence heartbeat-evoked responses. Biol. Psychol. 165, 108165 (2021).

    Article  PubMed  Google Scholar 

  81. Coll, M. P., Hobson, H., Bird, G. & Murphy, J. Systematic review and meta-analysis of the relationship between the heartbeat-evoked potential and interoception. Neurosci. Biobehav. Rev. 122, 190–200 (2021).

    Article  PubMed  Google Scholar 

  82. Kern, M., Aertsen, A., Schulze-Bonhage, A. & Ball, T. Heart cycle-related effects on event-related potentials, spectral power changes, and connectivity patterns in the human ECoG. Neuroimage 81, 178–190 (2013).

    Article  PubMed  Google Scholar 

  83. Azzalini, D., Buot, A., Palminteri, S. & Tallon-Baudry, C. Responses to heartbeats in ventromedial prefrontal cortex contribute to subjective preference-based decisions. J. Neurosci. 41, 5102–5114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Babo-Rebelo, M., Richter, C. G. & Tallon-Baudry, C. Neural responses to heartbeats in the default network encode the self in spontaneous thoughts. J. Neurosci. 36, 7829–7840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Babo-Rebelo, M., Wolpert, N., Adam, C., Hasboun, D. & Tallon-Baudry, C. Is the cardiac monitoring function related to the self in both the default network and right anterior insula? Philos. Trans. R Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0004 (2016).

  86. Park, H. D. et al. Transient modulations of neural responses to heartbeats covary with bodily self-consciousness. J. Neurosci. 36, 8453–8460 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Babo-Rebelo, M., Buot, A. & Tallon-Baudry, C. Neural responses to heartbeats distinguish self from other during imagination. Neuroimage 191, 10–20 (2019).

    Article  PubMed  Google Scholar 

  88. Couto, B. et al. Heart evoked potential triggers brain responses to natural affective scenes: a preliminary study. Auton. Neurosci. 193, 132–137 (2015).

    Article  PubMed  Google Scholar 

  89. Park, H. D. et al. Neural sources and underlying mechanisms of neural responses to heartbeats, and their role in bodily self-consciousness: an intracranial EEG study. Cereb. Cortex 28, 2351–2364 (2018).

    Article  PubMed  Google Scholar 

  90. Kim, J. et al. Sad faces increase the heartbeat-associated interoceptive information flow within the salience network: a MEG study. Sci. Rep. 9, 430 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Engelen, T., Buot, A., Grezes, J. & Tallon-Baudry, C. Whose emotion is it? Perspective matters to understand brain–body interactions in emotions. Neuroimage 268, 119867 (2023).

    Article  PubMed  Google Scholar 

  92. Schandry, R., Sparrer, B. & Weitkunat, R. From the heart to the brain: a study of heartbeat contingent scalp potentials. Int. J. Neurosci. 30, 261–275 (1986).

    Article  CAS  PubMed  Google Scholar 

  93. Montoya, P., Schandry, R. & Muller, A. Heartbeat evoked potentials (HEP): topography and influence of cardiac awareness and focus of attention. Electroencephalogr. Clin. Neurophysiol. 88, 163–172 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Pollatos, O. & Schandry, R. Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology 41, 476–482 (2004).

    Article  PubMed  Google Scholar 

  95. Pollatos, O., Kirsch, W. & Schandry, R. Brain structures involved in interoceptive awareness and cardioafferent signal processing: a dipole source localization study. Hum. Brain Mapp. 26, 54–64 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Villena-Gonzalez, M. et al. Attending to the heart is associated with posterior alpha band increase and a reduction in sensitivity to concurrent visual stimuli. Psychophysiology 54, 1483–1497 (2017).

    Article  PubMed  Google Scholar 

  97. García-Cordero, I. et al. Feeling, learning from and being aware of inner states: interoceptive dimensions in neurodegeneration and stroke. Philos. Trans. R. Soc. B Biol. Sci. 371, 20160006 (2016).

    Article  Google Scholar 

  98. Petzschner, F. H. et al. Focus of attention modulates the heartbeat evoked potential. Neuroimage 180, 595–606 (2019).

    Article  Google Scholar 

  99. Katkin, E. S., Cestaro, V. L. & Weitkunat, R. Individual differences in cortical evoked potentials as a function of heartbeat detection ability. Int. J. Neurosci. 61, 269–276 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Fittipaldi, S. et al. A multidimensional and multi-feature framework for cardiac interoception. Neuroimage 212, 116677 (2020).

    Article  PubMed  Google Scholar 

  101. Brener, J. & Ring, C. Towards a psychophysics of interoceptive processes: the measurement of heartbeat detection. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20160015 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Desmedt, O., Luminet, O. & Corneille, O. The heartbeat counting task largely involves non-interoceptive processes: evidence from both the original and an adapted counting task. Biol. Psychol. 138, 185–188 (2018).

    Article  PubMed  Google Scholar 

  103. Damasio, A. R. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1413–1420 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Fukushima, H., Terasawa, Y. & Umeda, S. Association between interoception and empathy: evidence from heart-beat evoked brain potential. Int. J. Psychophysiol. 79, 259–265 (2011).

    Article  PubMed  Google Scholar 

  105. Gentsch, A., Sel, A., Marshall, A. C. & Schutz-Bosbach, S. Affective interoceptive inference: evidence from heart-beat evoked brain potentials. Hum. Brain Mapp. 40, 20–33 (2019).

    Article  PubMed  Google Scholar 

  106. MacKinnon, S., Gevirtz, R., McCraty, R. & Brown, M. Utilizing heartbeat evoked potentials to identify cardiac regulation of vagal afferents during emotion and resonant breathing. Appl. Psychophysiol. Biofeedback 38, 241–255 (2013).

    Article  PubMed  Google Scholar 

  107. Luft, C. D. B. & Bhattacharya, J. Aroused with heart: modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Sci. Rep. 5, 15717 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bradley, M. M. Natural selective attention: orienting and emotion. Psychophysiology 46, 1–11 (2009).

    Article  PubMed  Google Scholar 

  109. Marshall, A. C., Gentsch, A., Blum, A.-L., Broering, C. & Schütz-Bosbach, S. I feel what I do: relating interoceptive processes and reward-related behavior. Neuroimage 191, 315–324 (2019).

    Article  PubMed  Google Scholar 

  110. Damasio, A. Self Comes to Mind: Constructing the Conscious Brain (Pantheon Books, 2010).

  111. Blanke, O. & Metzinger, T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13, 7–13 (2009).

    Article  PubMed  Google Scholar 

  112. Shao, S., Shen, K., Wilder-Smith, E. P. V. & Li, X. Effect of pain perception on the heartbeat evoked potential. Clin. Neurophysiol. 122, 1838–1845 (2011).

    Article  PubMed  Google Scholar 

  113. Candia-Rivera, D. et al. Neural responses to heartbeats detect residual signs of consciousness during resting state in postcomatose patients. J. Neurosci. 41, 5251–5262 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schulz, A. et al. Altered patterns of heartbeat-evoked potentials in depersonalization/derealization disorder: neurophysiological evidence for impaired cortical representation of bodily signals. Psychosom. Med. 77, 506–516 (2015).

    Article  PubMed  Google Scholar 

  115. Zhang, Y. S. & Ghazanfar, A. A. A hierarchy of autonomous systems for vocal production. Trends Neurosci. 43, 115–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W. & Feldman, J. L. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Del Negro, C. A., Funk, G. D. & Feldman, J. L. Breathing matters. Nat. Rev. Neurosci. 19, 351–367 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ito, J. et al. Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration. Nat. Commun. 5, 3572 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Yanovsky, Y., Ciatipis, M., Draguhn, A., Tort, A. B. & Brankack, J. Slow oscillations in the mouse hippocampus entrained by nasal respiration. J. Neurosci. 34, 5949–5964 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448–12467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Grosmaitre, X., Santarelli, L. C., Tan, J., Luo, M. & Ma, M. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat. Neurosci. 10, 348–354 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Davenport, P. W., Reep, R. L. & Thompson, F. J. Phrenic nerve afferent activation of neurons in the cat SI cerebral cortex. J. Physiol. 588, 873–886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nair, J. et al. Anatomy and physiology of phrenic afferent neurons. J. Neurophysiol. 118, 2975–2990 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, S. H. et al. Mapping of the sensory innervation of the mouse lung by specific vagal and dorsal root ganglion neuronal subsets. eNeuro https://doi.org/10.1523/ENEURO.0026-22.2022 (2022).

  125. Radna, R. J. & MacLean, P. D. Vagal elicitation of respiratory-type and other unit responses in basal limbic structures of squirrel monkeys. Brain Res. 213, 45–61 (1981).

    Article  CAS  PubMed  Google Scholar 

  126. Yang, C. F. & Feldman, J. L. Efferent projections of excitatory and inhibitory pre-Botzinger Complex neurons. J. Comp. Neurol. 526, 1389–1402 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yackle, K. et al. Breathing control center neurons that promote arousal in mice. Science 355, 1411–1415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Karalis, N. & Sirota, A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat. Commun. 13, 467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tort, A. B. L., Brankack, J. & Draguhn, A. Respiration-entrained brain rhythms are global but often overlooked. Trends Neurosci. 41, 186–197 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Zhong, W. et al. Selective entrainment of gamma subbands by different slow network oscillations. Proc. Natl Acad. Sci. USA 114, 4519–4524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lockmann, A. L., Laplagne, D. A., Leao, R. N. & Tort, A. B. A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J. Neurosci. 36, 5338–5352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nguyen Chi, V. et al. Hippocampal respiration-driven rhythm distinct from theta oscillations in awake mice. J. Neurosci. 36, 162–177 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Biskamp, J., Bartos, M. & Sauer, J. F. Organization of prefrontal network activity by respiration-related oscillations. Sci. Rep. https://doi.org/10.1038/srep45508 (2017).

  134. Bagur, S. et al. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12, 2605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moberly, A. H. et al. Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat. Commun. 9, 1528 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Frysinger, R. C. & Harper, R. M. Cardiac and respiratory correlations with unit discharge in epileptic human temporal lobe. Epilepsia 31, 162–171 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. Herrero, J. L., Khuvis, S., Yeagle, E., Cerf, M. & Mehta, A. D. Breathing above the brain stem: volitional control and attentional modulation in humans. J. Neurophysiol. 119, 145–159 (2018).

    Article  PubMed  Google Scholar 

  138. Arshamian, A., Iravani, B., Majid, A. & Lundstrom, J. N. Respiration modulates olfactory memory consolidation in Humans. J. Neurosci. 38, 10286–10294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nakamura, N. H., Fukunaga, M. & Oku, Y. Respiratory modulation of cognitive performance during the retrieval process. PLoS ONE 13, e0204021 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Perl, O. et al. Human non-olfactory cognition phase-locked with inhalation. Nat. Hum. Behav. 3, 501–512 (2019).

    Article  PubMed  Google Scholar 

  141. Rojas-Libano, D., Wimmer Del Solar, J., Aguilar-Rivera, M., Montefusco-Siegmund, R. & Maldonado, P. E. Local cortical activity of distant brain areas can phase-lock to the olfactory bulb’s respiratory rhythm in the freely behaving rat. J. Neurophysiol. 120, 960–972 (2018).

    Article  PubMed  Google Scholar 

  142. Maier, E., Lauer, S. & Brecht, M. Layer 4 organization and respiration locking in the rodent nose somatosensory cortex. J. Neurophysiol. 124, 822–832 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Kluger, D. S. & Gross, J. Depth and phase of respiration modulate cortico-muscular communication. Neuroimage 222, 117272 (2020).

    Article  PubMed  Google Scholar 

  144. Schulz, A., Schilling, T. M., Vogele, C., Larra, M. F. & Schachinger, H. Respiratory modulation of startle eye blink: a new approach to assess afferent signals from the respiratory system. Philos. Trans. R Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0019 (2016).

  145. Johannknecht, M. & Kayser, C. The influence of the respiratory cycle on reaction times in sensory-cognitive paradigms. Sci. Rep. 12, 2586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kluger, D. S., Balestrieri, E., Busch, N. A. & Gross, J. Respiration aligns perception with neural excitability. Elife https://doi.org/10.7554/eLife.70907.sa2 (2021).

  147. Flexman, J. E. & Demaree, R. G. & Simpson, D. D Respiratory phase and visual signal detection. Percept. Psychophys. 16, 337–339 (1974).

    Article  Google Scholar 

  148. Kluger, D. & Gross, J. Respiration modulates oscillatory neural network activity at rest. PLoS Biol. https://doi.org/10.1371/journal.pbio.3001457 (2021).

  149. Monti, A., Porciello, G., Tieri, G. & Aglioti, S. M. The ‘embreathment’ illusion highlights the role of breathing in corporeal awareness. J. Neurophysiol. 123, 420–427 (2020).

    Article  PubMed  Google Scholar 

  150. Adler, D., Herbelin, B., Similowski, T. & Blanke, O. Breathing and sense of self: visuo-respiratory conflicts alter body self-consciousness. Respir. Physiol. Neurobiol. 203, 68–74 (2014).

    Article  PubMed  Google Scholar 

  151. Tort, A. B. L., Hammer, M., Zhang, J., Brankack, J. & Draguhn, A. Temporal relations between cortical network oscillations and breathing frequency during REM Sleep. J. Neurosci. 41, 5229–5242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gandevia, S. C. & Rothwell, J. C. Activation of the human diaphragm from the motor cortex. J. Physiol. 384, 109–118 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Maskill, D., Murphy, K., Mier, A., Owen, M. & Guz, A. Motor cortical representation of the diaphragm in man. J. Physiol. 443, 105–121 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Poe, G. R., Kristensen, M. P., Rector, D. M. & Harper, R. M. Hippocampal activity during transient respiratory events in the freely behaving cat. Neuroscience 72, 39–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science https://doi.org/10.1126/science.aat5236 (2018).

  156. Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 887–888 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Ichiki, T. et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 602, 468–474 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Mercado-Perez, A. & Beyder, A. Gut feelings: mechanosensing in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 19, 283–296 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kim, M., Heo, G. & Kim, S.-Y. Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat. Rev. Neurosci. 23, 135–156 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Bozler, E. The action potentials of the stomach. Am. J. Physiol. 144, 693–700 (1945).

    Article  Google Scholar 

  161. Suzuki, N., Prosser, C. L. & Dahms, V. Boundary cells between longitudinal and circular layers—essential for electrical slow waves in cat intestine. Am. J. Physiol. 250, G287–G294 (1986).

    CAS  PubMed  Google Scholar 

  162. Sanders, K. M., Koh, S. D. & Ward, S. M. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 68, 307–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Huizinga, J. D. & Chen, J. H. Interstitial cells of Cajal: update on basic and clinical science. Curr. Gastroenterol. Rep. 16, 363 (2014).

    Article  PubMed  Google Scholar 

  164. Hong, G.-S. et al. Effect of transcutaneous vagus nerve stimulation on muscle activity in the gastrointestinal tract (transVaGa): a prospective clinical trial. Int. J. Colorectal Dis. 34, 417–422 (2019).

    Article  PubMed  Google Scholar 

  165. Teckentrup, V. et al. Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimul. 13, 470–473 (2020).

    Article  PubMed  Google Scholar 

  166. Levinthal, D. J. & Strick, P. L. Multiple areas of the cerebral cortex influence the stomach. Proc. Natl Acad. Sci. USA 117, 13078–13083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Paintal, A. S. Impulses in vagal afferent fibres from stretch receptors in the stomach and their role in the peripheral mechanism of hunger. Nature 172, 1194–1195 (1953).

    Article  CAS  PubMed  Google Scholar 

  168. Andrews, P. L., Grundy, D. & Scratcherd, T. Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. J. Physiol. 298, 513–524 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cao, J., Wang, X., Powley, T. L. & Liu, Z. Gastric neurons in the nucleus tractus solitarius are selective to the orientation of gastric electrical stimulation. J. Neural Eng. 18, 056066 (2021).

    Article  Google Scholar 

  170. Traub, R. J., Sengupta, J. N. & Gebhart, G. F. Differential c-Fos expression in the nucleus of the solitary tract and spinal cord following noxious gastric distention in the rat. Neuroscience 74, 873–884 (1996).

    Article  CAS  PubMed  Google Scholar 

  171. Ozaki, N. & Gebhart, G. F. Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1449–G1459 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Stephan, E. et al. Functional neuroimaging of gastric distention. J. Gastrointest. Surg. 7, 740–749 (2003).

    Article  PubMed  Google Scholar 

  173. Ladabaum, U. et al. Gastric distention correlates with activation of multiple cortical and subcortical regions. Gastroenterology 120, 369–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Vandenbergh, J. et al. Regional brain activation during proximal stomach distention in humans: a positron emission tomography study. Gastroenterology 128, 564–573 (2005).

    Article  PubMed  Google Scholar 

  175. van Oudenhove, L. et al. Cortical deactivations during gastric fundus distension in health: visceral pain-specific response or attenuation of ‘default mode’ brain function? A H2 15O-PET study. Neurogastroenterol. Motil. 21, 259–271 (2009).

    Article  PubMed  Google Scholar 

  176. Spetter, M. S., de Graaf, C., Mars, M., Viergever, M. A. & Smeets, P. A. The sum of its parts–effects of gastric distention, nutrient content and sensory stimulation on brain activation. PLoS ONE 9, e90872 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wang, G.-J. et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage 39, 1824–1831 (2008).

    Article  PubMed  Google Scholar 

  178. Cao, J. et al. Gastric stimulation drives fast BOLD responses of neural origin. Neuroimage 197, 200–211 (2019).

    Article  PubMed  Google Scholar 

  179. Pigarev, I. N. Neurons of visual cortex respond to visceral stimulation during slow wave sleep. Neuroscience 62, 1237–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  180. Rebollo, I., Devauchelle, A. D., Beranger, B. & Tallon-Baudry, C. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans. Elife 7, e33321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Rebollo, I. & Tallon-Baudry, C. The sensory and motor components of the cortical hierarchy are coupled to the rhythm of the stomach during rest. J. Neurosci. 42, 2205–2220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cao, J., Wang, X., Chen, J., Zhang, N. & Liu, Z. The vagus nerve mediates the stomach-brain coherence in rats. Neuroimage 263, 119628 (2022).

    Article  PubMed  Google Scholar 

  183. Richter, C. G., Babo-Rebelo, M., Schwartz, D. & Tallon-Baudry, C. Phase-amplitude coupling at the organism level: the amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. Neuroimage 146, 951–958 (2017).

    Article  PubMed  Google Scholar 

  184. Levakov, G. et al. Neural correlates of future weight loss reveal a possible role for brain-gastric interactions. Neuroimage 224, 117403 (2021).

    Article  PubMed  Google Scholar 

  185. Todd, J., Cardellicchio, P., Swami, V., Cardini, F. & Aspell, J. E. Weaker implicit interoception is associated with more negative body image: evidence from gastric-alpha phase amplitude coupling and the heartbeat evoked potential. Cortex 143, 254–266 (2021).

    Article  PubMed  Google Scholar 

  186. Laubach, M., Amarante, L. M., Swanson, K. & White, S. R. What, if anything, is rodent prefrontal cortex? eNeuro https://doi.org/10.1523/ENEURO.0315-18.2018 (2018).

  187. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Erisir, A., Van Horn, S. C. & Sherman, S. M. Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc. Natl Acad. Sci. USA 94, 1517–1520 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Erisir, A., Van Horn, S. C., Bickford, M. E. & Sherman, S. M. Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J. Comp. Neurol. 377, 535–549 (1997).

    Article  CAS  PubMed  Google Scholar 

  190. Uhlrich, D. J., Tamamaki, N., Murphy, P. C. & Sherman, S. M. Effects of brain stem parabrachial activation on receptive field properties of cells in the cat’s lateral geniculate nucleus. J. Neurophysiol. 73, 2428–2447 (1995).

    Article  CAS  PubMed  Google Scholar 

  191. Farley, G. R., Barlow, S. M. & Netsell, R. Factors influencing neural activity in parabrachial regions during cat vocalizations. Exp. Brain Res. 89, 341–351 (1992).

    Article  CAS  PubMed  Google Scholar 

  192. Smotherman, M., Kobayasi, K., Ma, J., Zhang, S. & Metzner, W. A mechanism for vocal-respiratory coupling in the mammalian parabrachial nucleus. J. Neurosci. 26, 4860–4869 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Levinthal, D. J. & Strick, P. L. The motor cortex communicates with the kidney. J. Neurosci. 32, 6726–6731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  195. Criscuolo, A., Schwartze, M. & Kotz, S. A. Cognition through the lens of a body-brain dynamic system. Trends Neurosci. 45, 667–677 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  197. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Article  PubMed  Google Scholar 

  198. Buzsaki, G., Logothetis, N. & Singer, W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80, 751–764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wolpert, N., Rebollo, I. & Tallon-Baudry, C. Electrogastrography for psychophysiological research: practical considerations, analysis pipeline, and normative data in a large sample. Psychophysiology 57, e13599 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Shadlen, M. N. & Movshon, J. A. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  201. Behrens, T. E. J. et al. What Is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Busch, N. A. & VanRullen, R. Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc. Natl Acad. Sci. USA 107, 16048–16053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wachowiak, M. All in a sniff: olfaction as a model for active sensing. Neuron 71, 962–973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lakatos, P., Gross, J. & Thut, G. A new unifying account of the roles of neuronal entrainment. Curr. Biol. 29, R890–R905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Allen, M., Levy, A., Parr, T. & Friston, K. J. In the body’s eye: the computational anatomy of interoceptive inference. PLoS Comput. Biol. 18, e1010490 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Allen, M., Varga, S. & Heck, D. H. Respiratory rhythms of the predictive mind. Psychol. Rev. https://doi.org/10.1037/rev0000391 (2022).

    Article  PubMed  Google Scholar 

  207. Petzschner, F. H., Garfinkel, S. N., Paulus, M. P., Koch, C. & Khalsa, S. S. Computational models of interoception and body regulation. Trends Neurosci. 44, 63–76 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Livneh, Y. et al. Estimation of current and future physiological states in insular cortex. Neuron 105, 1094–1111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gu, X., Hof, P. R., Friston, K. J. & Fan, J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 521, 3371–3388 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).

    Article  PubMed  Google Scholar 

  211. Barrett, L. F. & Simmons, W. K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16, 419–429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kleckner, I. R. et al. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat. Hum. Behav. 1, 0069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Bruggemann, J., Shi, T. & Apkarian, A. V. Viscero-somatic neurons in the primary somatosensory cortex (SI) of the squirrel monkey. Brain Res. 756, 297–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  214. Potts, J. T. Neural circuits controlling cardiorespiratory responses: baroreceptor and somatic afferents in the nucleus tractus solitarius. Clin. Exp. Pharm. Physiol. 29, 103–111 (2002).

    Article  CAS  Google Scholar 

  215. Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  216. Blanke, O., Slater, M. & Serino, A. Behavioral, neural, and computational principles of bodily self-consciousness. Neuron 88, 145–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Glover, G. H., Li, T. Q. & Ress, D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44, 162–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169–173 (2017).

    Article  PubMed  Google Scholar 

  219. Mosher, C. P. et al. Cellular classes in the human brain revealed in vivo by heartbeat-related modulation of the extracellular action potential waveform. Cell Rep. 30, 3536–3551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Scholkmann, F. et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85, 6–27 (2014).

    Article  PubMed  Google Scholar 

  221. Dirlich, G., Vogl, L., Plaschke, M. & Strian, F. Cardiac field effects on the EEG. Electroencephalogr. Clin. Neurophysiol. 102, 307–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  222. Jousmaki, V. & Hari, R. Cardiac artifacts in magnetoencephalogram. J. Clin. Neurophysiol. 13, 172–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  223. Wolpert, N. & Tallon-Baudry, C. Coupling between the phase of a neural oscillation or bodily rhythm with behavior: evaluation of different statistical procedures. Neuroimage 236, 118050 (2021).

    Article  PubMed  Google Scholar 

  224. Sherman, M. T., Wang, H. T., Garfinkel, S. N. & Critchley, H. D. The Cardiac Timing Toolbox (CaTT): testing for physiologically plausible effects of cardiac timing on behaviour. Biol. Psychol. 170, 108291 (2022).

    Article  PubMed  Google Scholar 

  225. Kreibig, S. D. Autonomic nervous system activity in emotion: a review. Biol. Psychol. 84, 394–421 (2010).

    Article  PubMed  Google Scholar 

  226. Ebert, D., Rassler, B. & Hefter, H. Coordination between breathing and forearm movements during sinusoidal tracking. Eur. J. Appl. Physiol. 81, 288–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  227. Farb, N. A., Segal, Z. V. & Anderson, A. K. Attentional modulation of primary interoceptive and exteroceptive cortices. Cereb. Cortex 23, 114–126 (2013).

    Article  PubMed  Google Scholar 

  228. Smoller, J. W., Pollack, M. H., Otto, M. W., Rosenbaum, J. F. & Kradin, R. L. Panic anxiety, dyspnea, and respiratory disease. Theoretical and clinical considerations. Am. J. Respir. Crit. Care Med. 154, 6–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  229. Jelincic, V., Van Diest, I., Torta, D. M. & von Leupoldt, A. The breathing brain: The potential of neural oscillations for the understanding of respiratory perception in health and disease. Psychophysiology 59, e13844 (2022).

    Article  PubMed  Google Scholar 

  230. Harrison, O. K. et al. Interoception of breathing and its relationship with anxiety. Neuron 109, 4080–4093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Li, S. & Rymer, W. Z. Voluntary breathing influences corticospinal excitability of nonrespiratory finger muscles. J. Neurophysiol. 105, 512–521 (2011).

    Article  PubMed  Google Scholar 

  232. Saoji, A. A., Raghavendra, B. R. & Manjunath, N. K. Effects of yogic breath regulation: a narrative review of scientific evidence. J. Ayurveda Integr. Med. 10, 50–58 (2019).

    Article  PubMed  Google Scholar 

  233. Balasubramaniam, M., Telles, S. & Doraiswamy, P. M. Yoga on our minds: a systematic review of yoga for neuropsychiatric disorders. Front. Psychiatry 3, 117 (2012).

    PubMed  Google Scholar 

  234. Farb, N. A., Segal, Z. V. & Anderson, A. K. Mindfulness meditation training alters cortical representations of interoceptive attention. Soc. Cogn. Affect Neurosci. 8, 15–26 (2013).

    Article  PubMed  Google Scholar 

  235. Sevoz-Couche, C. & Laborde, S. Heart rate variability and slow-paced breathing:when coherence meets resonance. Neurosci. Biobehav Rev. 135, 104576 (2022).

    Article  PubMed  Google Scholar 

  236. Hsu, S. M., Tseng, C. H., Hsieh, C. H. & Hsieh, C. W. Slow-paced inspiration regularizes alpha phase dynamics in the human brain. J. Neurophysiol. 123, 289–299 (2020).

    Article  PubMed  Google Scholar 

  237. Jafari, H., Courtois, I., Van den Bergh, O., Vlaeyen, J. W. S. & Van Diest, I. Pain and respiration: a systematic review. Pain 158, 995–1006 (2017).

    Article  PubMed  Google Scholar 

  238. Laborde, S. et al. Psychophysiological effects of slow-paced breathing at six cycles per minute with or without heart rate variability biofeedback. Psychophysiology 59, e13952 (2022).

    Article  PubMed  Google Scholar 

  239. Lehrer, P. M., Vaschillo, E. G. & Vidali, V. Heart rate and breathing are not always in phase during resonance frequency breathing. Appl. Psychophysiol. Biofeedback 45, 145–152 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank N. Gerard for help with Fig. 1. This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 670325, advanced grant BRAVIUS) and senior fellowship of the Canadian Institute For Advance Research (CIFAR) program in Brain, Mind and Consciousness to C.T.-B. This research was also funded by Agence Nationale pour la Recherche (ANR-17-EURE-0017, ANR-10- IDEX-0001-02). T.E. is supported by ANR-21-CE37-0031 and M.S. by a fellowship from the Geneva University Hospitals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Tallon-Baudry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Cameron McAlpine, Karin Roelofs, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelen, T., Solcà, M. & Tallon-Baudry, C. Interoceptive rhythms in the brain. Nat Neurosci 26, 1670–1684 (2023). https://doi.org/10.1038/s41593-023-01425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01425-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing