Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Value dynamics affect choice preparation during decision-making

Abstract

During decision-making, neurons in the orbitofrontal cortex (OFC) sequentially represent the value of each option in turn, but it is unclear how these dynamics are translated into a choice response. One brain region that may be implicated in this process is the anterior cingulate cortex (ACC), which strongly connects with OFC and contains many neurons that encode the choice response. We investigated how OFC value signals interacted with ACC neurons encoding the choice response by performing simultaneous high-channel count recordings from the two areas in nonhuman primates. ACC neurons encoding the choice response steadily increased their firing rate throughout the decision-making process, peaking shortly before the time of the choice response. Furthermore, the value dynamics in OFC affected ACC ramping—when OFC represented the more valuable option, ACC ramping accelerated. Because OFC tended to represent the more valuable option more frequently and for a longer duration, this interaction could explain how ACC selects the more valuable response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Task and behavior.
Fig. 2: Single-neuron encoding of choice and value during the 500-ms preceding choice.
Fig. 3: ACC ramping activity around the time of the choice response.
Fig. 4: Value decoding in OFC and ACC.
Fig. 5: OFC value integration.
Fig. 6: Effects of OFC value states on ACC direction-selective neurons.

Similar content being viewed by others

Data availability

The dataset supporting the current work is available from the corresponding author upon request.

Code availability

The analysis code supporting the current work is available on T.W.E.’s GitHub: https://github.com/t-elston/OFCvalue-to-ACCresponse.

References

  1. Camille, N., Griffiths, C. A., Vo, K., Fellows, L. K. & Kable, J. W. Ventromedial frontal lobe damage disrupts value maximization in humans. J. Neurosci. 31, 7527–7532 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Howard, J. D. et al. Targeted stimulation of human orbitofrontal networks disrupts outcome-guided behavior. Curr. Biol. 30, 490–498 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ballesta, S., Shi, W., Conen, K. E. & Padoa-Schioppa, C. Values encoded in orbitofrontal cortex are causally related to economic choices. Nature 588, 450–453 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Knudsen, E. B. & Wallis, J. D. Closed-loop theta stimulation in the orbitofrontal cortex prevents reward-based learning. Neuron 106, 537–547 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Carmichael, S. T. & Price, J. L. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371, 179–207 (1996).

    CAS  PubMed  Google Scholar 

  6. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kennerley, S. W., Dahmubed, A. F., Lara, A. H. & Wallis, J. D. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21, 1162–1178 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. Cai, X. & Padoa-Schioppa, C. Contributions of orbitofrontal and lateral prefrontal cortices to economic choice and the good-to-action transformation. Neuron 81, 1140–1151 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19, 973–980 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Balewski, Z. Z., Knudsen, E. B. & Wallis, J. D. Fast and slow contributions to decision-making in corticostriatal circuits. Neuron 110, 2170–2182 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hunt, L. T. et al. Triple dissociation of attention and decision computations across prefrontal cortex. Nat. Neurosci. 21, 1471–1481 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai, X. & Padoa-Schioppa, C. Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex. J. Neurosci. 32, 3791–3808 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Luk, C. H. & Wallis, J. D. Choice coding in frontal cortex during stimulus-guided or action-guided decision-making. J. Neurosci. 33, 1864–1871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayden, B. Y. & Platt, M. L. Neurons in anterior cingulate cortex multiplex information about reward and action. J. Neurosci. 30, 3339–3346 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsumoto, K., Suzuki, W. & Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301, 229–232 (2003).

    CAS  PubMed  Google Scholar 

  16. Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).

    CAS  PubMed  Google Scholar 

  17. Vogt, B. A. & Gabriel, M. (eds) in Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook 249–284 (Birkhaeuser, 1993).

  18. Dum, R. P. & Strick, P. L. Motor areas in the frontal lobe of the primate. Physiol. Behav. 77, 677–682 (2002).

    CAS  PubMed  Google Scholar 

  19. Caruana, F. et al. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain 141, 3035–3051 (2018).

    PubMed  Google Scholar 

  20. Parvizi, J., Rangarajan, V., Shirer, W. R., Desai, N. & Greicius, M. D. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron 80, 1359–1367 (2013).

    CAS  PubMed  Google Scholar 

  21. Walton, M. E., Bannerman, D. M. & Rushworth, M. F. The role of rat medial frontal cortex in effort-based decision making. J. Neurosci. 22, 10996–11003 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M. & Rushworth, M. F. Separate neural pathways process different decision costs. Nat. Neurosci. 9, 1161–1168 (2006).

    CAS  PubMed  Google Scholar 

  23. Cai, X. & Padoa-Schioppa, C. Neuronal activity in dorsal anterior cingulate cortex during economic choices under variable action costs. eLife 10, e71695 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Heilbronner, S. R. & Hayden, B. Y. Dorsal anterior cingulate cortex: a bottom-up view. Annu. Rev. Neurosci. 39, 149–170 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wallis, J. D. Decoding cognitive processes from neural ensembles. Trends Cogn. Sci. 22, 1091–1102 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Piet, A. T., Erlich, J. C., Kopec, C. D. & Brody, C. D. Rat prefrontal cortex inactivations during decision making are explained by bistable attractor dynamics. Neural Comput. 29, 2861–2886 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Smith, P. L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004).

    CAS  PubMed  Google Scholar 

  28. Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    CAS  PubMed  Google Scholar 

  29. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    CAS  PubMed  Google Scholar 

  30. Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E. & Shadlen, M. N. Elapsed decision time affects the weighting of prior probability in a perceptual decision task. J. Neurosci. 31, 6339–6352 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cisek, P., Puskas, G. A. & El-Murr, S. Decisions in changing conditions: the urgency-gating model. J. Neurosci. 29, 11560–11571 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ditterich, J. Evidence for time-variant decision making. Eur. J. Neurosci. 24, 3628–3641 (2006).

    PubMed  Google Scholar 

  34. Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N. & Pouget, A. The cost of accumulating evidence in perceptual decision making. J. Neurosci. 32, 3612–3628 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Thura, D., Beauregard-Racine, J., Fradet, C. W. & Cisek, P. Decision making by urgency gating: theory and experimental support. J. Neurophysiol. 108, 2912–2930 (2012).

    PubMed  Google Scholar 

  36. Roesch, M. R. & Olson, C. R. Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J. Neurophysiol. 90, 1766–1789 (2003).

    PubMed  Google Scholar 

  37. Rushworth, M. F., Behrens, T. E., Rudebeck, P. H. & Walton, M. E. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn. Sci. 11, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  38. Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J. & Rushworth, M. F. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9, 940–947 (2006).

    CAS  PubMed  Google Scholar 

  39. Sallet, J. et al. Expectations, gains, and losses in the anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 7, 327–336 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Kennerley, S. W., Behrens, T. E. & Wallis, J. D. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat. Neurosci. 14, 1581–1589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsumoto, M., Matsumoto, K., Abe, H. & Tanaka, K. Medial prefrontal cell activity signaling prediction errors of action values. Nat. Neurosci. 10, 647–656 (2007).

    CAS  PubMed  Google Scholar 

  42. Amiez, C., Joseph, J. P. & Procyk, E. Anterior cingulate error-related activity is modulated by predicted reward. Eur. J. Neurosci. 21, 3447–3452 (2005).

    PubMed  PubMed Central  Google Scholar 

  43. Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    CAS  PubMed  Google Scholar 

  44. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. White, J. K. et al. A neural network for information seeking. Nat. Commun. 10, 5168 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Yim, M. Y., Cai, X. & Wang, X. J. Transforming the choice outcome to an action plan in monkey lateral prefrontal cortex: a neural circuit model. Neuron 103, 520–532 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight (Oxford Univ. Press, 2014).

  48. Hunt, L. T., Behrens, T. E., Hosokawa, T., Wallis, J. D. & Kennerley, S. W. Capturing the temporal evolution of choice across prefrontal cortex. eLife 4, e11945 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Lin, Z., Nie, C., Zhang, Y., Chen, Y. & Yang, T. Evidence accumulation for value computation in the prefrontal cortex during decision making. Proc. Natl Acad. Sci. USA 117, 30728–30737 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jezek, K., Henriksen, E. J., Treves, A., Moser, E. I. & Moser, M. B. Theta-paced flickering between place-cell maps in the hippocampus. Nature 478, 246–249 (2011).

    CAS  PubMed  Google Scholar 

  51. Mark, S., Romani, S., Jezek, K. & Tsodyks, M. Theta-paced flickering between place-cell maps in the hippocampus: a model based on short-term synaptic plasticity. Hippocampus 27, 959–970 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Strait, C. E., Blanchard, T. C. & Hayden, B. Y. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex. Neuron 82, 1357–1366 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rustichini, A. & Padoa-Schioppa, C. A neuro-computational model of economic decisions. J. Neurophysiol. 114, 1382–1398 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Hunt, L. T. et al. Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci. 15, 470–476 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiang, F. K., Wallis, J. D. & Rich, E. L. Cognitive strategies shift information from single neurons to populations in prefrontal cortex. Neuron 110, 709–721 (2022).

    CAS  PubMed  Google Scholar 

  56. Hwang, J., Mitz, A. R. & Murray, E. A. NIMH MonkeyLogic: behavioral control and data acquisition in MATLAB. J. Neurosci. Methods 323, 13–21 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Knudsen, E. B., Balewski, Z. Z. & Wallis, J. D. A model-based approach for targeted neurophysiology in the behaving non-human primate. In Proc. 9th International IEEE/EMBS Conference on Neural Engineering (NER) 195–198 (IEEE, 2019).

  58. Cavanagh, S. E., Malalasekera, W. M. N., Miranda, B., Hunt, L. T. & Kennerley, S. W. Visual fixation patterns during economic choice reflect covert valuation processes that emerge with learning. Proc. Natl Acad. Sci. USA 116, 22795–22801 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hosokawa, T., Kennerley, S. W., Sloan, J. & Wallis, J. D. Single-neuron mechanisms underlying cost-benefit analysis in frontal cortex. J. Neurosci. 33, 17385–17397 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Ford, E. Hu, W. Liberti, L. Meckler and N. Munet for useful feedback on the manuscript. This work was funded by NIMH (R01-MH117763 and R01-MH121448 to J.D.W.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z.B. and J.D.W. designed the experiments. Z.Z.B. and E.B.K. collected the data. T.W.E. and Z.Z.B. analyzed the data. Z.Z.B., T.W.E. and J.D.W. wrote the manuscript. E.B.K. and T.W.E. edited the manuscript. J.D.W. supervised the project.

Corresponding author

Correspondence to Joni D. Wallis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks R Becket Ebitz, Camillo Padoa-Schioppa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Choice biases as a function of reward probability.

(a) Probability of subject C selecting a given choice option as a function of the probability of reward predicted by the option, as compared to the optimal choice as given by equation 1. N = 12508 trials. Error bars denote the standard error of the mean. (b) Same data as for subject G. N = 4902 trials. Error bars denote the standard error of the mean. (c) Difference of subjects’ choices from choice optimality as a function of the probability of reward. Asterisks indicate significant differences from zero (p < 0.001, one-sample t-test corrected for multiple comparisons). Error bars denote the standard error of the mean.

Extended Data Fig. 2 Subjects’ saccade times.

Distribution of first and second saccade times.

Extended Data Fig. 3 Recording locations.

Reconstruction of (a) ACC and (b) OFC recording sites on coronal slices. Circle sizes represent the number of neurons.

Extended Data Fig. 4 Relationship between single neural activity and population-level decoding.

(a) More neurons significantly encoded the value of the same option that was currently reported by the decoder (color) than significantly encoded the value of the alternate option (gray). Significant encoding was determined by regressing the neuron’s firing rate (synced to the onset of the decoder state) against either the value of the option reported by the decoder or the value of the alternate option (assessed at p < 0.01). Horizontal gray bars indicate significant differences between the proportion of neurons encoding the current versus alternate option (χ2 test, p < 0.01). (b) Each data point is the beta coefficient from each neuron’s standardized firing rate during the first 100 ms immediately after state onset regressed against the parameters shown on the x- and y- axes. In both regions and both subjects there was a strong correlation between a neuron’s encoding of value for the left or right option when either was currently being reported by the decoder.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balewski, Z.Z., Elston, T.W., Knudsen, E.B. et al. Value dynamics affect choice preparation during decision-making. Nat Neurosci 26, 1575–1583 (2023). https://doi.org/10.1038/s41593-023-01407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01407-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing