Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A rapid and bidirectional reporter of neural activity reveals neural correlates of social behaviors in Drosophila

Abstract

Neural activity is modulated over different timescales encompassing subseconds to hours, reflecting changes in external environment, internal state and behavior. Using Drosophila as a model, we developed a rapid and bidirectional reporter that provides a cellular readout of recent neural activity. This reporter uses nuclear versus cytoplasmic distribution of CREB-regulated transcriptional co-activator (CRTC). Subcellular distribution of GFP-tagged CRTC (CRTC::GFP) bidirectionally changes on the order of minutes and reflects both increases and decreases in neural activity. We established an automated machine-learning-based routine for efficient quantification of reporter signal. Using this reporter, we demonstrate mating-evoked activation and inactivation of modulatory neurons. We further investigated the functional role of the master courtship regulator gene fruitless (fru) and show that fru is necessary to ensure activation of male arousal neurons by female cues. Together, our results establish CRTC::GFP as a bidirectional reporter of recent neural activity suitable for examining neural correlates in behavioral contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drosophila CRTC translocates into the nucleus upon odor-evoked neural activation.
Fig. 2: Subcellular distribution of CRTC::GFP provides a readout for neural activity in free-moving flies.
Fig. 3: Subcellular distribution of CRTC::GFP changes on the order of minutes and indicates both increases and decreases in neural activity.
Fig. 4: Automating pixel classification by deep convolutional neural network.
Fig. 5: CRTC::GFP detects acute increases and decreases in neural activity upon mating.
Fig. 6: Examination of the activity of P1a neurons in fru mutants.
Fig. 7: Examination of the activity of P1a neurons in food-deprived flies.

Similar content being viewed by others

Data availability

All numerical data are available in Supplementary Table 4. Information and requests for large raw data files, such as images and videos, should be directed to, and will be fulfilled by, D.H. Information and requests for resources and reagents should also be directed to, and will be fulfilled by, D.H.

Code availability

Data analysis codes, including neural network, are available for download from GitHub (https://github.com/hattorilabutsw/crtctoolkit/releases/) and are in Supplementary File 1.

References

  1. DeNardo, L. & Luo, L. Genetic strategies to access activated neurons. Curr. Opin. Neurobiol. 45, 121–129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Greenberg, M. E. & Ziff, E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433–438 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Fujita, N. et al. Visualization of neural activity in insect brains using a conserved immediate early gene, Hr38. Curr. Biol. 23, 2063–2070 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Barth, A. L., Gerkin, R. C. & Dean, K. L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci. 24, 6466–6475 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, K. H. et al. In vivo two-photon imaging reveals a role of Arc in enhancing orientation specificity in visual cortex. Cell 126, 389–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, X., Rahman, R., Guo, F. & Rosbash, M. Genome-wide identification of neuronal activity-regulated genes in Drosophila. eLife 5, e19942 (2016).

  8. Takayanagi-Kiya, S. & Kiya, T. Activity-dependent visualization and control of neural circuits for courtship behavior in the fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 116, 5715–5720 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao, X. J. et al. A transcriptional reporter of intracellular Ca2+ in Drosophila. Nat. Neurosci. 18, 917–925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, B. et al. The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila. Cell Metab. 7, 434–444 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conkright, M. D. et al. TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Iourgenko, V. et al. Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc. Natl Acad. Sci. USA 100, 12147–12152 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bittinger, M. A. et al. Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins. Curr. Biol. 14, 2156–2161 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ch’ng, T. H. et al. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 150, 207–221 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ch’ng, T. H. et al. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons. Front. Mol. Neurosci. 8, 48 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Ronderos, D. S., Lin, C. C., Potter, C. J. & Smith, D. P. Farnesol-detecting olfactory neurons in Drosophila. J. Neurosci. 34, 3959–3968 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luan, H., Peabody, N. C., Vinson, C. R. & White, B. H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019).

  23. Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aso, Y. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3, e04577 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kimura, K., Hachiya, T., Koganezawa, M., Tazawa, T. & Yamamoto, D. Fruitless and doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 59, 759–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Cachero, S., Ostrovsky, A. D., Yu, J. Y., Dickson, B. J. & Jefferis, G. S. Sexual dimorphism in the fly brain. Curr. Biol. 20, 1589–1601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kohatsu, S., Koganezawa, M. & Yamamoto, D. Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69, 498–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Koganezawa, M., Kimura, K. & Yamamoto, D. The neural circuitry that functions as a switch for courtship versus aggression in Drosophila males. Curr. Biol. 26, 1395–1403 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Inagaki, H. K. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11, 325–332 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Hoopfer, E. D., Jung, Y., Inagaki, H. K., Rubin, G. M. & Anderson, D. J. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. eLife 4, e11346 (2015).

  31. Hindmarsh Sten, T., Li, R., Otopalik, A. & Ruta, V. Sexual arousal gates visual processing during Drosophila courtship. Nature 595, 549–553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan, Y., Meissner, G. W. & Baker, B. S. Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proc. Natl Acad. Sci. USA 109, 10065–10070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. von Philipsborn, A. C. et al. Neuronal control of Drosophila courtship song. Neuron 69, 509–522 (2011).

    Article  Google Scholar 

  34. Ishii, K., Wohl, M., DeSouza, A. & Asahina, K. Sex-determining genes distinctly regulate courtship capability and target preference via sexually dimorphic neurons. eLife 9, e52701 (2020).

  35. Kohatsu, S. & Yamamoto, D. Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state. Nat. Commun. 6, 6457 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Kallman, B. R., Kim, H. & Scott, K. Excitation and inhibition onto central courtship neurons biases Drosophila mate choice. eLife 4, e11188 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Clowney, E. J., Iguchi, S., Bussell, J. J., Scheer, E. & Ruta, V. Multimodal chemosensory circuits controlling male courtship in Drosophila. Neuron 87, 1036–1049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tayler, T. D., Pacheco, D. A., Hergarden, A. C., Murthy, M. & Anderson, D. J. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc. Natl Acad. Sci. USA 109, 20697–20702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shohat-Ophir, G., Kaun, K. R., Azanchi, R., Mohammed, H. & Heberlein, U. Sexual deprivation increases ethanol intake in Drosophila. Science 335, 1351–1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zer-Krispil, S. et al. Ejaculation induced by the activation of Crz neurons is rewarding to Drosophila males. Curr. Biol. 28, 1445–1452 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163, 1742–1755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamagata, N., Hiroi, M., Kondo, S., Abe, A. & Tanimoto, H. Suppression of dopamine neurons mediates reward. PLoS Biol. 14, e1002586 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baker, B. S., Taylor, B. J. & Hall, J. C. Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell 105, 13–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Billeter, J. C., Rideout, E. J., Dornan, A. J. & Goodwin, S. F. Control of male sexual behavior in Drosophila by the sex determination pathway. Curr. Biol. 16, R766–R776 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Dickson, B. J. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322, 904–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kimura, K., Ote, M., Tazawa, T. & Yamamoto, D. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438, 229–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Ito, H., Sato, K., Kondo, S., Ueda, R. & Yamamoto, D. Fruitless represses robo1 transcription to shape male-specific neural morphology and behavior in Drosophila. Curr. Biol. 26, 1532–1542 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Datta, S. R. et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B. J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Manoli, D. S. et al. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Demir, E. & Dickson, B. J. fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Pan, Y. & Baker, B. S. Genetic identification and separation of innate and experience-dependent courtship behaviors in Drosophila. Cell 156, 236–248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Costa, M., Manton, J. D., Ostrovsky, A. D., Prohaska, S. & Jefferis, G. S. NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 91, 293–311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, S., Liu, Q., Tabuchi, M. & Wu, M. N. Sleep drive is encoded by neural plastic changes in a dedicated circuit. Cell 165, 1347–1360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oh, Y. et al. A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature 574, 559–564 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hirano, Y. et al. Fasting launches CRTC to facilitate long-term memory formation in Drosophila. Science 339, 443–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Cheriyamkunnel, S. J. et al. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr. Biol. 31, 4231–4245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, H. H. et al. A nutrient-specific gut hormone arbitrates between courtship and feeding. Nature 602, 632–638 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hensch, T. K. Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Kandel, E. R. The molecular biology of memory storage: a dialog between genes and synapses. Biosci. Rep. 21, 565–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Segal, R. A. & Greenberg, M. E. Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463–489 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Echeverria, P. C. & Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta 1803, 641–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Htun, H., Barsony, J., Renyi, I., Gould, D. L. & Hager, G. L. Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc. Natl Acad. Sci. USA 93, 4845–4850 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Htun, H., Holth, L. T., Walker, D., Davie, J. R. & Hager, G. L. Direct visualization of the human estrogen receptor α reveals a role for ligand in the nuclear distribution of the receptor. Mol. Biol. Cell 10, 471–486 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Ciana, P. et al. Engineering of a mouse for the in vivo profiling of estrogen receptor activity. Mol. Endocrinol. 15, 1104–1113 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Barolo, S. Transgenic Wnt/TCF pathway reporters: all you need is Lef? Oncogene 25, 7505–7511 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Hattori, D. et al. Representations of novelty and familiarity in a mushroom body compartment. Cell 169, 956–969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Perkins, L. A. et al. The transgenic RNAi project at Harvard Medical School: resources and validation. Genetics 201, 843–852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zirin, J. et al. Large-scale transgenic Drosophila resource collections for loss- and gain-of-function studies. Genetics 214, 755–767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, D. M. & Goodman, C. S. Ectopic and increased expression of fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008).

    Article  PubMed  Google Scholar 

  75. Anand, A. et al. Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless. Genetics 158, 1569–1595 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Potter, C. J., Tasic, B., Russler, E. V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pfeiffer, B. D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage ɸC31. Genetics 166, 1775–1782 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Donnelly, M. L. L. et al. The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J. Gen. Virol. 82, 1027–1041 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Venken, K. J., He, Y., Hoskins, R. A. & Bellen, H. J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Knapp, J. M., Chung, P. & Simpson, J. H. Generating customized transgene landing sites and multi-transgene arrays in Drosophila using ɸC31 integrase. Genetics 199, 919–934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Seelig, J. D. et al. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat. Methods 7, 535–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. He, K. M., Zhang, X. Y., Ren, S. Q. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 https://doi.org/10.1109/Cvpr.2016.90 (IEEE, 2016).

  84. Sandler, M., Howard, A., Zhu, M. L., Zhmoginov, A. & Chen, L. C. MobileNetV2: inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 4510–4520 https://doi.org/10.1109/Cvpr.2018.00474 (IEEE, 2018).

  85. Chollet, F. Xception: deep learning with depthwise separable convolutions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1800–1807 https://doi.org/10.1109/Cvpr.2017.195 (IEEE, 2017).

  86. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Lecture Notes in Computer Science. 234–241 https://doi.org/10.1007/978-3-319-24574-4_28 (Springer, 2015).

Download references

Acknowledgements

We thank W. Wojtowicz, H. Kramer and L. Zipursky for their comments on the manuscript; C. Rogine and R. Larios for technical assistance; K. Asahina, Y. Aso, G. Rubin, Z. Shang, M. Sieber, D. Smith and members of the Axel and Hattori laboratories for discussions; Y. Aso for sharing fly stock before publication; D. Anderson, K. Asahina, W. Grueber, M. Montminy, G. Struhl, Bloomington Drosophila Stock Center and Vienna Drosophila Resource Center for fly stocks; UT Southwestern Bioinformatics Core Facility for help with machine learning; and M. Alayon, R. Doris, C. Eccard, B. Fields, M. Gutierrez, P. Kisloff, A. Nemes and L. Taylor for administrative assistance. R.A. is a Howard Hughes Investigator. This work is supported by National Institutes of Health grant R01 DK132705, the Texas Rising STAR Award and the UT Southwestern Effie Marie Cain Scholarship to D.H.

Author information

Authors and Affiliations

Authors

Contributions

K.C.M., R.A. and D.H. conceived the project. M.B., K.J.S., M.G.M., X.W., A.Z., A.M., K.E.C., J.G.B. and D.H. performed experiments and analyzed data. A.R.J. and D.H. performed deep convolutional neural network training. R.A. and D.H. supervised the project. D.H. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Daisuke Hattori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Minoru Saitoe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Translocation of CRTC::GFP in DC3 PNs.

(a) ΔF/F0 traces from GCaMP calcium imaging experiments of DC3 projection neurons (PNs). Stimulus period is indicated by black line. Sample number represents the number of cell bodies imaged and number of flies in parenthesis. Lines indicate mean and shadings indicate SEM. (b) Changes in CRTC::GFP nuclear signals (NLI) in DC3 PNs in different conditions for Fig. 1d. Thin lines represent individual flies (averaged across cells) and thick lines indicate mean ± SEM across flies. (c) and (d) Changes in CRTC::GFP nuclear signals (NLI) in DC3 PNs in different conditions for Fig. 1e,h. Thin lines represent individual flies (averaged across cells) and thick lines indicate mean ± SEM across flies. ΔNLI in Fig. 1e,h was calculated for each cell by subtracting baseline NLI and averaged across cells per fly. (e) Estimated fraction of CRTC::GFP molecules in the nucleus for different NLIs in cells with different relative nuclear radii. The range of relative nuclear radii was determined to be 0.55 to 0.85 based on the cell and nuclear ROIs determined for 10,338 neurons of different cell types that were immunostained and imaged using confocal microscopy (0.71 ± 0.09; mean ± SD). For DC3 live imaging, mean relative nuclear radius is calculated based on images obtained using 2-photon microscope (0.70 ± 0.06; mean ± SD).

Extended Data Fig. 2 Subcellular distribution of CRTC::GFP provides a readout for neural activity in free moving flies.

(a) NLI of CRTC::GFP signal in PAM-γ4 for thermogenetic activation experiments. Individual fly data for Fig. 2b. Lighter color dots are individual cells and darker color dots are mean of each fly. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). (b) Confocal images of brains immunostained with anti-calcineurin-β antibody (see Methods). Maximum intensity projection images of slices that encompass antennal lobe to mushroom body lobes are shown. A pan-neuronal driver (c155, elav) was used to express shRNA targeting GFP (control, left) or CanB/B2 (right). Immunostaining for both control and experimental brains was performed in the same wells and the same imaging parameters were used for all brains. Representative images from 3 experiments (n = 12 for GFP, n = 12 for CanB/B2) are shown. (c) NLI of CRTC::GFP signal in the MBON-α‘3 (labeled by VT037580-GAL4) in the presence of RNAi-mediated knockdown of calcineurin B and B2 (CanB/B2). Each dot represents mean NLI across cells per fly. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). Statistics by two-sided Wilcoxon rank sum test; ***P < 0.001. (d) NLI of CRTC::GFP signal in MBON-α‘3 for thermogenetic activation experiments. Individual fly data for Fig. 2d. Lighter color dots are individual cells and darker color dots are mean of each fly. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). (e) Thermogenetic activation experiments for MBON-α‘3 using GFP instead of CRTC::GFP. Each dot represents mean NLI across cells per fly. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). Kruskal-Wallis test followed by a post hoc Tukey’s HSD test; P = 0.002 for comparisons between dTRPA1+, 32 °C and dTRPA1-, 25 °C. (f) NLI of CRTC::GFP signal in P1a neurons of male flies in different rearing conditions. Individual fly data for Fig. 2f. Lighter color dots are individual cells and darker color dots are mean of each fly. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). (g) NLI of CRTC::GFP signal in P1a neurons of male flies in different rearing conditions. Subject flies were housed singly for 2 days upon eclosion and were housed for 1 day with males or females, or were left single-housed (‘solo’). Each dot represents mean NLI across cells per fly. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). Statistics by Kruskal-Wallis test followed by a post hoc Tukey’s HSD test; *P < 0.05.

Extended Data Fig. 3 Evaluation of network performance.

(a) Performance evaluation for trained U-net, MobileNet-v2, ResNet-18, and Xception. (b) Eleven examples of pixel classification by trained ResNet-50 (UbwonkoNet) and trained U-net. The cells in the 4th and 8th rows show examples where U-Net failed to selectively ‘focus’ on the cell body of interest. Examples include those shown in Fig. 4c. (c) Comparison of experimental results obtained using UbwonkoNet-determined NLIs vs manually-determined NLIs. A subset of data from the P1a experiments described in Fig. 7 (ad libitum fed group) were manually quantified (purple) and compared to the results obtained by UbwonkoNet (green). The left two columns are the same as the first and the third column of Fig. 7b. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). Statistics by Kruskal-Wallis test followed by a post hoc Tukey’s HSD test; ***P < 0.001.

Extended Data Fig. 4 Neuronal expression of CRTC::GFP does not significantly affect male mating and courtship behaviors.

(a) Fertility of flies expressing GFP, CRTC::GFP, or EGFP::Kir2.1 in corazonin neurons. n = 25 each. Statistics by Fisher’s exact test and Bonferroni correction; ***P < 0.001. (b) Behavior observation chamber used to examine mating behaviors. (c) Left; ethograms of mating experiments. Males of indicated genotypes were paired with wild-type females in the behavior observation chamber. Middle; copulation duration in 2-hour observation period for fly pairs each consisting of a male of indicated genotype and a wild-type female. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). Statistics by Kruskal-Wallis test followed by a post hoc Tukey’s HSD test; ***P < 0.001. Right; latency to copulation initiation. Statistics by Kruskal-Wallis test followed by a post hoc Tukey’s HSD test; P > 0.05. (d) Courtship and mating behaviors of male flies expressing CRTC::GFP pan-neuronally. Left; ethograms. Right; courtship index. Boxplot; median (horizontal line), first and third quartiles (box), and data within 1.5x IQR (whiskers). Statistics by two-sided Wilcoxon rank sum test; P > 0.05. (e) Behavioral transitions during courtship behavior of male flies expressing CRTC::GFP pan-neuronally. Behaviors aligned to the onset (left) or offset (right) of licking (top) or attempted copulation (bottom). Line plots show fraction of epochs with specific behavior over time (thick lines) and shading indicates 95% confidence interval determined by bootstrapping. n = 132 epochs for licking and n = 112 epochs for attempted copulation for elav>GFP, n = 167 and 132 for elav>CRTC::GFP.

Extended Data Fig. 5 Examination of P1a activity in fruitless mutant flies.

(a) Additional example flies for P1a calcium imaging. (b) P1a GCaMP response in contact epochs. Unsorted data for Fig. 6f. Calcium traces are shown only for the duration of each contact epoch, which varies from epoch to epoch. (c) Fraction of contact epochs in which P1a neurons become activated as determined with a different threshold from Fig. 6g. Activation epoch if at least 5 consecutive frames (appx. 0.28 sec) exhibit over 1.96 z-scored activity. Statistics by Fisher’s exact test. ***P < 0.001, n.s. P > 0.05.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonheur, M., Swartz, K.J., Metcalf, M.G. et al. A rapid and bidirectional reporter of neural activity reveals neural correlates of social behaviors in Drosophila. Nat Neurosci 26, 1295–1307 (2023). https://doi.org/10.1038/s41593-023-01357-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01357-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing