Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural cognitive signals during spontaneous movements in the macaque

Abstract

The single-neuron basis of cognitive processing in primates has mostly been studied in laboratory settings where movements are severely restricted. It is unclear, therefore, how natural movements might affect neural signatures of cognition in the brain. Moreover, studies in mice indicate that body movements, when measured, account for most of the neural dynamics in the cortex. To examine these issues, we recorded from single-neuron ensembles in the prefrontal cortex in moving monkeys performing a cognitive task and characterized eye, head and body movements using video tracking. Despite considerable trial-to-trial movement variability, single-neuron tuning could be precisely measured and decision signals accurately decoded on a single-trial basis. Creating or abolishing spontaneous movements through head restraint and task manipulations had no measurable impact on neural responses. However, encoding models showed that uninstructed movements explained as much neural variance as task variables, with most movements aligned to task events. These results demonstrate that cognitive signals in the cortex are robust to natural movements, but also that unmeasured movements are potential confounds in cognitive neurophysiology experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Task design and neural implants.
Fig. 2: Behavioral performance and movement tracking.
Fig. 3: Single-neuron and population analyses.
Fig. 4: Single-neuron and population analyses.
Fig. 5: Decoding analyses from neural ensembles.
Fig. 6: Manipulation of uninstructed movements through modified tasks.
Fig. 7: Modified tasks have no effect on neural population tuning.
Fig. 8: Neural encoding of task, instructed and uninstructed movements.

Similar content being viewed by others

Data availability

The data from this study will be stored on a public repository maintained by the Open Science Framework. The repository can be found at https://osf.io/zeqbp/.

Code availability

The MATLAB code used for the data analysis in this study is available online at https://osf.io/zeqbp/.

References

  1. Shadlen, M. N. & Kiani, R. Decision making as a window on cognition. Neuron 80, 791–806 (2013).

    Article  CAS  Google Scholar 

  2. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  Google Scholar 

  3. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  4. Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 364, 11–11 (2019).

    Article  Google Scholar 

  5. Santos, L., Opris, I., Fuqua, J., Hampson, R. E. & Deadwyler, S. A. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain. J. Neurosci. Meth. 205, 368–374 (2012).

    Article  Google Scholar 

  6. Nicolelis, M. A. L. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA 100, 11041–11046 (2003).

    Article  CAS  Google Scholar 

  7. Nicolelis, M. A. L. Methods for Neural Ensemble Recordings (CRC, 2008).

  8. Adams, D. L., Economides, J. R., Jocson, C. M. & Horton, J. C. A biocompatible titanium headpost for stabilizing behaving monkeys. J. Neurophysiol. 98, 993–1001 (2007).

    Article  Google Scholar 

  9. Betelak, K. F., Margiotti, E. A., Wohlford, M. E. & Suzuki, D. A. The use of titanium implants and prosthodontic techniques in the preparation of non-human primates for long-term neuronal recording studies. J. Neurosci. Meth. 112, 9–20 (2001).

    Article  CAS  Google Scholar 

  10. Isoda, M. et al. Design of a head fixation device for experiments in behaving monkeys. J. Neurosci. Meth. 141, 277–282 (2005).

    Article  Google Scholar 

  11. Mendoza-Halliday, D., Torres, S. & Martinez-Trujillo, J. C. Sharp emergence of feature-selective sustained activity along the dorsal visual pathway. Nat. Neurosci. 17, 1255–1262 (2014).

    Article  CAS  Google Scholar 

  12. Ong, W. S., Madlon-Kay, S. & Platt, M. L. Neuronal correlates of strategic cooperation in monkeys. Nat. Neurosci. 24, 116–128 (2020).

    Article  Google Scholar 

  13. Resulaj, A., Kiani, R., Wolpert, D. M. & Shadlen, M. N. Changes of mind in decision-making. Nature 461, 263–266 (2009).

    Article  CAS  Google Scholar 

  14. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  15. Galton, F. The measure of fidget. Nature 32, 174–175 (1885).

    Article  Google Scholar 

  16. Ekman, P. in Handbook of Cognition and Emotion (eds. Power, M. J. & Dalgleish, T.) Ch. 3 (Wiley, 1999); https://doi.org/10.1002/0470013494

  17. Goonetilleke, S. C. et al. Cross-species comparison of anticipatory and stimulus-driven neck muscle activity well before saccadic gaze shifts in humans and nonhuman primates. J. Neurophysiol. 114, 902–913 (2015).

    Article  CAS  Google Scholar 

  18. Lestienne, F., Vidal, P. P. & Berthoz, A. Gaze changing behaviour in head restrained monkey. Exp. Brain Res. 53, 349–356 (1984).

    Article  CAS  Google Scholar 

  19. Drew, P. J., Winder, A. T. & Zhang, Q. Twitches, blinks, and fidgets: important generators of ongoing neural activity. Neurosci. 25, 298–313 (2019).

    Google Scholar 

  20. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article  CAS  Google Scholar 

  21. Petrides, M. in The Frontal Lobes Revisited (ed. Perecman, E.) 91–108 (IRBN, 1987).

  22. Petrides, M. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101 (1985).

    Article  CAS  Google Scholar 

  23. Petrides, M. Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav. Brain Res. 5, 407–413 (1982).

    Article  CAS  Google Scholar 

  24. Leavitt, M. L., Pieper, F., Sachs, A. J. & Martinez-Trujillo, J. C. A quadrantic bias in prefrontal representation of visual-mnemonic space. Cereb. Cortex 28, 2405–2421 (2017).

    Article  Google Scholar 

  25. Tremblay, S., Pieper, F., Sachs, A. & Martinez-Trujillo, J. Attentional filtering of visual information by neuronal ensembles in the primate lateral prefrontal cortex. Neuron 85, 202–215 (2015).

    Article  CAS  Google Scholar 

  26. Kiani, R. et al. Natural grouping of neural responses reveals spatially segregated clusters in prearcuate cortex. Neuron 85, 1359–1373 (2015).

    Article  CAS  Google Scholar 

  27. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    Article  CAS  Google Scholar 

  28. Treue, S. & Trujillo, J. C. M. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  Google Scholar 

  29. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    Article  CAS  Google Scholar 

  30. Testard, C., Tremblay, S. & Platt, M. From the field to the lab and back: neuroethology of primate social behavior. Curr. Opin. Neurobiol. 68, 76–83 (2021).

    Article  CAS  Google Scholar 

  31. Pearson, J. M., Watson, K. K. & Platt, M. L. Decision making: the neuroethological turn. Neuron 82, 950–965 (2014).

    Article  CAS  Google Scholar 

  32. Nourizonoz, A. et al. EthoLoop: automated closed-loop neuroethology in naturalistic environments. Nat. Methods 17, 1052–1059 (2020).

    Article  CAS  Google Scholar 

  33. Kaas, J. H. Evolutionary Neuroscience (Academic Press, 2020); https://doi.org/10.1016/b978-0-12-820584-6.00013-1

  34. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  CAS  Google Scholar 

  35. Middlebrooks, P. Anne Churchland – decisions, lapses, and fidgets. (No. 39) [Audio podcast episode]. In Brain Inspired. https://braininspired.co/podcast/39/(2019).

  36. Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).

    Article  Google Scholar 

  37. Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight (Oxford Univ. Press, 2012).

  38. Ventura-Antunes, L., Mota, B. & Herculano-Houzel, S. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains. Front. Neuroanat. 7, 3 (2013).

    Article  Google Scholar 

  39. Kaas, J. H. The evolution of neocortex in primates. Prog. Brain. Res. 195, 91–102 (2012).

    Article  Google Scholar 

  40. Squire, R. F., Noudoost, B., Schafer, R. J. & Moore, T. Prefrontal contributions to visual selective attention. Annu. Rev. Neurosci. 36, 451–466 (2013).

    Article  CAS  Google Scholar 

  41. Moore, T. & Zirnsak, M. Neural mechanisms of selective visual attention. Annu. Rev. Psych. 68, 47–72 (2017).

    Article  CAS  Google Scholar 

  42. Passingham, R. E. & Wise, S. P. in The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight 133–156 (Oxford Univ. Press, 2012); https://doi.org/10.1093/acprof:osobl/9780199552917.001.0001

  43. Petrides, M. Lateral prefrontal cortex: architectonic and functional organization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 781–795 (2005).

    Article  Google Scholar 

  44. Petrides, M. & Pandya, D. N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036 (1999).

    Article  CAS  Google Scholar 

  45. Hwang, J., Mitz, A. R. & Murray, E. A. NIMH MonkeyLogic: Behavioral control and data acquisition in MATLAB. J. Neurosci. Methods 323, 13–21 (2019).

    Article  Google Scholar 

  46. Ramseyer, F. T. Motion energy analysis (MEA): A primer on the assessment of motion from video. J. Couns. Psychol. 67, 536–549 (2020).

    Article  Google Scholar 

  47. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article  CAS  Google Scholar 

  48. Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

    Article  CAS  Google Scholar 

  49. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    Article  Google Scholar 

  50. Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).

    Article  CAS  Google Scholar 

  51. Huang, G. Missing data filling method based on linear interpolation and lightgbm. J. Phys. Conf. Ser. 1754, 012187 (2021).

    Article  Google Scholar 

  52. Akinkunmi, M. Introduction to Statistics using R. Synthesis Lectures on Mathematics and Statistics (ed. Krantz, S. G.) 1–235 (Morgan & Claypool, 2019)..

Download references

Acknowledgements

We thank S. Musall, M. T. Kaufman and A. K. Churchland in providing assistance to replicate the methodology used in Musall et al.20. Financial support was received from the Canadian Institutes of Health Research Fellowship Award (S.T.), the Human Frontier Science Program (S.T.), the National Institutes of Health (5R01DC017690-02, R.W.D.) and a Natural Sciences and Engineering Research Council of Canada grant (M.P.).

Author information

Authors and Affiliations

Authors

Contributions

S.T., C.T. and M.P. designed the experiments. S.T., C.T. and J.I. trained the animals and recorded the data. S.T., C.T. and R.W.D. analyzed the data. S.T., C.T. and M.P. wrote the article with assistance from J.I. and R.W.D.

Corresponding author

Correspondence to Sébastien Tremblay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Simon Musall and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremblay, S., Testard, C., DiTullio, R.W. et al. Neural cognitive signals during spontaneous movements in the macaque. Nat Neurosci 26, 295–305 (2023). https://doi.org/10.1038/s41593-022-01220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01220-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing