Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Considering sex as a biological variable will require a global shift in science culture

Abstract

For over half a century, male rodents have been the default model organism in preclinical neuroscience research, a convention that has likely contributed to higher rates of misdiagnosis and adverse side effects from drug treatment in women. Studying both sexes could help to rectify these public health problems, but incentive structures in publishing and career advancement deter many researchers from doing so. Moreover, funding agency directives to include male and female animals and human participants in grant proposals lack mechanisms to hold recipients accountable. In this Perspective, we highlight areas of behavioral, cellular and systems neuroscience in which fundamental sex differences have been identified, demonstrating that truly rigorous science must include males and females. We call for a cultural and structural change in how we conduct research and evaluate scientific progress, realigning our professional reward systems and experimental standards to produce a more equitable, representative and therefore translational body of knowledge.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Sex-dependent behavioral strategies.
Fig. 2: A mechanism for sex differences in morphine efficacy.

References

  1. Wu, J. et al. Editor’s Choice—Impact of initial hospital diagnosis on mortality for acute myocardial infarction: a national cohort study. Eur. Heart J. Acute Cardiovasc. Care 7, 139–148 (2018).

    Article  PubMed  Google Scholar 

  2. Newman-Toker, D. E., Moy, E., Valente, E., Coffey, R. & Hines, A. L. Missed diagnosis of stroke in the emergency department: a cross-sectional analysis of a large population-based sample. Diagnosis 1, 155–166 (2014).

    Article  PubMed  Google Scholar 

  3. Hinshaw, S. P. et al. Prospective follow-up of girls with attention-deficit/hyperactivity disorder into early adulthood: continuing impairment includes elevated risk for suicide attempts and self-injury. J. Consulting Clin. Psychol. 80, 1041–1051 (2012).

    Article  Google Scholar 

  4. Anderson, G. D. Chapter 1 gender differences in pharmacological response. Int. Rev. Neurobiol. 83, 1–10 (2008).

    Article  PubMed  Google Scholar 

  5. Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 35, 565–572 (2011).

    Article  PubMed  Google Scholar 

  6. Mamlouk, G. M., Dorris, D. M., Barrett, L. R. & Meitzen, J. Sex bias and omission in neuroscience research is influenced by research model and journal, but not reported NIH funding. Front. Neuroendocrinol. 57, 100835 (2020).

  7. Woitowich, N. C., Beery, A. & Woodruff, T. A 10-year follow-up study of sex inclusion in the biological sciences. eLife 9, e56344 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Clayton, J. A. Studying both sexes: a guiding principle for biomedicine. FASEB J. 30, 519–524 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Woitowich, N. C. & Woodruff, T. K. Implementation of the NIH Sex-Inclusion Policy: attitudes and opinions of study section members. J. Women’s Health 28, 9–16 (2019).

    Article  Google Scholar 

  10. Kokras, N. & Dalla, C. Sex differences in animal models of psychiatric disorders. Br. J. Pharmacol. https://doi.org/10.1111/bph.12710 (2014).

  11. Shansky, R. M. Sex differences in behavioral strategies: avoiding interpretational pitfalls. Curr. Opin. Neurobiol. 49, 95–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Galea, L. A. M., Kavaliers, M. & Ossenkopp, K. P. Sexually dimorphic spatial learning in meadow voles Microtus pennsylvanicus and deer mice Peromyscus maniculatus. J. Exp. Biol. 199, 195–200 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Roof, R. L. & Havens, M. D. Testosterone improves maze performance and induces development of a male hippocampus in females. Brain Res. 572, 310–313 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Korol, D. L., Malin, E. L., Borden, K. A., Busby, R. A. & Couper-Leo, J. Shifts in preferred learning strategy across the estrous cycle in female rats. Hormones Behav. 45, 330–338 (2004).

    Article  CAS  Google Scholar 

  15. Perrot-Sinal, T. S., Kostenuik, M. A., Ossenkopp, K.-P. & Kavaliers, M. Sex differences in performance in the Morris water maze and the effects of initial nonstationary hidden platform training. Behav. Neurosci. 110, 1309–1320 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Tronson, N. C. Focus on females: a less biased approach for studying strategies and mechanisms of memory. Curr. Opin. Behav. Sci. 23, 92–97 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen, C. S. et al. Divergent strategies for learning in males and females. Curr. Biol. https://doi.org/10.1016/j.cub.2020.09.075 (2020).

  18. Lebron-Milad, K. & Milad, M. R. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biol. Mood Anxiety Disord. 2, 3 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fanselow, M. S. Conditioned and unconditional components of post-shock freezing. Pavlovian J. Biol. Sci. 15, 177–182 (1980).

    Article  CAS  Google Scholar 

  20. Gruene, T. M., Flick, K., Stefano, A., Shea, S. D. & Shansky, R. M. Sexually divergent expression of active and passive conditioned fear responses in rats. eLife 4, e11352 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pellman, B. A., Schuessler, B. P., Tellakat, M. & Kim, J. J. Sexually dimorphic risk mitigation strategies in rats. eNeuro 4, ENEURO.0288-16.2017 (2017).

  22. Greiner, E. M., Müller, I., Norris, M. R., Ng, K. H. & Sangha, S. Sex differences in fear regulation and reward-seeking behaviors in a fear–safety–reward discrimination task. Behav. Brain Res. 368, 111903 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Cahill, L. Why sex matters for neuroscience. Nat. Rev. Neurosci. 7, 477–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. de Vries, G. J. Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 145, 1063–1068 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Barker, J. M. & Galea, L. A. M. Sex and regional differences in estradiol content in the prefrontal cortex, amygdala and hippocampus of adult male and female rats. Gen. Comp. Endocrinol. 164, 77–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Oberlander, J. G. & Woolley, C. S. 17β-estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J. Neurosci. 36, 2677–2690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jain, A., Huang, G. Z. & Woolley, C. S. Latent sex differences in molecular signaling that underlies excitatory synaptic potentiation in the hippocampus. J. Neurosci. 39, 1552–1565 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, S., Seidlitz, J., Blumenthal, J. D., Clasen, L. S. & Raznahan, A. Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans. Proc. Natl Acad. Sci. USA 117, 18788–18798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farrell, M. R., Gruene, T. M. & Shansky, R. M. The influence of stress and gonadal hormones on neuronal structure and function. Hormones Behav. 76, 118–124 (2015).

    Article  CAS  Google Scholar 

  32. Shansky, R. M. Estrogen, stress and the brain: progress toward unraveling gender discrepancies in major depressive disorder. Expert Rev. Neurotherapeutics 9, 967–973 (2009).

    Article  CAS  Google Scholar 

  33. McEwen, B. S. Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann. N.Y. Acad. Sci. 933, 265–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Radley, J. J. et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Radley, J. J. et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 507, 1141–1150 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 102, 9371–9376 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kunimatsu, A., Yasaka, K., Akai, H., Kunimatsu, N. & Abe, O. MRI findings in posttraumatic stress disorder. J. Magn. Reson. Imaging https://doi.org/10.1002/jmri.26929 (2019).

  39. Galea, L. A. et al. Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 81, 689–697 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Garrett, J. E. & Wellman, C. L. Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 162, 195–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Shansky, R. M. et al. Estrogen promotes stress sensitivity in a prefrontal cortex–amygdala pathway. Cereb. Cortex 20, 2560–2567 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Blume, S. R., Padival, M., Urban, J. H. & Rosenkranz, J. A. Disruptive effects of repeated stress on basolateral amygdala neurons and fear behavior across the estrous cycle in rats. Sci. Rep. 9, 12292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry 6, 168–176 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Kessler, R. C., Chiu, W. T., Demler, O., Walters, E. E. & Walters, E. E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ruau, D., Liu, L. Y., Clark, J. D., Angst, M. S. & Butte, A. J. Sex differences in reported pain across 11,000 patients captured in electronic medical records. J. Pain 13, 228–234 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Steingrímsdóttir, Ó. A., Landmark, T., Macfarlane, G. J. & Nielsen, C. S. Defining chronic pain in epidemiological studies: a systematic review and meta-analysis. Pain 158, 2092–2107 (2017).

    Article  PubMed  Google Scholar 

  47. Card, T., Canavan, C. & West, J. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 6, 71 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mogil, J. S. & Chanda, M. L. The case for the inclusion of female subjects in basic science studies of pain. Pain 117, 1–5 (2005).

    Article  PubMed  Google Scholar 

  49. Mogil, J. S. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat. Rev. Neurosci. 21, 353–365 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Will, T. R. et al. Problems and progress regarding sex bias and omission in neuroscience research. eNeuro 4, ENEURO.0278-17.2017 (2017).

  51. Brookoff, D. Chronic pain. 2. The case for opioids. Hospital Pract. 35, 69–84 (2000).

    Article  CAS  Google Scholar 

  52. Brookoff, D. Chronic pain. 1. A new disease? Hospital Pract. 35, 45–59 (2000).

    Article  CAS  Google Scholar 

  53. Rosen, S. F. et al. Increased pain sensitivity and decreased opioid analgesia in T-cell-deficient mice and implications for sex differences. Pain 160, 358–366 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Kandasamy, R., Calsbeek, J. J. & Morgan, M. M. Analysis of inflammation-induced depression of home cage wheel running in rats reveals the difference between opioid antinociception and restoration of function. Behav. Brain Res. 317, 502–507 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Armendariz, A. & Nazarian, A. Morphine antinociception on thermal sensitivity and place conditioning in male and female rats treated with intraplantar complete Freund’s adjuvant. Behav. Brain Res. 343, 21–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Greenspan, J. D. et al. Studying sex and gender differences in pain and analgesia: a consensus report. Pain 132, S26 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Craft, R. M. Sex differences in opioid analgesia: ‘from mouse to man’. Clin. J. Pain 19, 175–186 (2003).

    Article  PubMed  Google Scholar 

  58. Wang, X., Traub, R. J. & Murphy, A. Z. Persistent pain model reveals sex difference in morphine potency. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R300–R306 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Doyle, H. H., Eidson, L. N., Sinkiewicz, D. M. & Murphy, A. Z. Sex differences in microglia activity within the periaqueductal gray of the rat: a potential mechanism driving the dimorphic effects of morphine. J. Neurosci. 37, 3202–3214 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bernal, S. A., Morgan, M. M. & Craft, R. M. PAG µ opioid receptor activation underlies sex differences in morphine antinociception. Behav. Brain Res. 177, 126–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Loyd, D. R., Wang, X. & Murphy, A. Z. Sex differences in μ-opioid receptor expression in the rat midbrain periaqueductal gray are essential for eliciting sex differences in morphine analgesia. J. Neurosci. 28, 14007–14017 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krzanowska, E. K., Znamensky, V., Wilk, S. & Bodnar, R. J. Antinociceptive and behavioral activation responses elicited by d-pro2-dndomorphin-2 in the ventrolateral periaqueductal gray are sensitive to sex and gonadectomy differences in rats. Peptides 21, 705–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Krzanowska, E. K. & Bodnar, R. J. Morphine antinociception elicited from the ventrolateral periaqueductal gray is sensitive to sex and gonadectomy differences in rats. Brain Res. 821, 224–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Selley, D. E. et al. Effect of strain and sex on μ opioid receptor-mediated G-protein activation in rat brain. Brain Res. Bull. 60, 201–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Fullerton, E. F., Rubaharan, M., Karom, M. C., Hanberry, R. I. & Murphy, A. Z. Advanced age attenuates the antihyperalgesic effect of morphine and decreases μ-opioid receptor expression and binding in the rat midbrain periaqueductal gray in male and female rats. Neurobiol. Aging 98, 78–87 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Basbaum, A. I., Clanton, C. H. & Fields, H. L. Opiate and stimulus produced analgesia: functional anatomy of a medullospinal pathway. Proc. Natl Acad. Sci. USA 73, 4685–4688 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Basbaum, A. I., Clanton, C. H. & Fields, H. L. Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J. Comp. Neurol. 178, 209–224 (1978).

    Article  CAS  PubMed  Google Scholar 

  68. Basbaum, A. I. & Fields, H. L. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J. Comp. Neurol. 187, 513–531 (1979).

    Article  CAS  PubMed  Google Scholar 

  69. Loyd, D. R., Morgan, M. M. & Murphy, A. Z. Morphine preferentially activates the periaqueductal gray–rostral ventromedial medullary pathway in the male rat: a potential mechanism for sex differences in antinociception. Neuroscience 147, 456–468 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Loyd, D. R. & Murphy, A. Z. Sex differences in the anatomical and functional organization of the periaqueductal gray–rostral ventromedial medullary pathway in the rat: a potential circuit mediating the sexually dimorphic actions of morphine. J. Comp. Neurol. 496, 723–738 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Watkins, L. R., Hutchinson, M. R., Johnston, I. N. & Maier, S. F. Glia: novel counter-regulators of opioid analgesia. Trends Neurosci. 28, 661–669 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Hutchinson, M. R. et al. Possible involvement of Toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience 167, 880–893 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Hutchinson, M. R. et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav. Immun. 22, 1178–1189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hutchinson, M. R. et al. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. Scientific World Journal 7, 98–111 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Doyle, H. H. & Murphy, A. Z. Sex differences in innate immunity and its impact on opioid pharmacology. J. Neurosci. Res. 95, 487–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sorge, R. E. et al. Spinal cord Toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J. Neurosci. 31, 15450–15454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mogil, J. S. Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nat. Rev. Neurosci. 13, 859–866 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Vale, R. D. Accelerating scientific publication in biology. Proc. Natl Acad. Sci. USA 112, 13439–13446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cordero, R. J. B., de León-Rodriguez, C. M., Alvarado-Torres, J. K., Rodriguez, A. R. & Casadevall, A. Life science’s average publishable unit (APU) has increased over the past two decades. PLoS ONE 11, e0156983 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Snyder, S. H. Science interminable: blame Ben? Proc. Natl Acad. Sci. USA 110, 2428–2429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Dijk, D., Manor, O. & Carey, L. B. Publication metrics and success on the academic job market. Curr. Biol. 24, R516–R517 (2014).

    Article  PubMed  Google Scholar 

  83. Directorate-General for Research and Innovation (European Commission). Interim evaluation of Horizon 2020 Commission staff working document. https://ec.europa.eu/research/evaluations/pdf/archive/h2020_evaluations/swd(2017)220-in-depth-interim_evaluation-h2020.pdf (European Commission, 2018).

  84. Kalpazidou Schmidt, E. & Ovseiko, P. V. Link Horizon Europe funding to real steps to gender equality. Nature 584, 525 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Shansky, R. M. Are hormones a ‘female problem’ for animal research? Science 364, 825–826 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Arnegard, M. E., Whitten, L. A., Hunter, C. & Clayton, J. A. Sex as a biological variable: a 5-year progress report and call to action. J. Women’s Health 29, 858–864 (2020).

    Article  Google Scholar 

  87. Prendergast, B. J., Onishi, K. G. & Zucker, I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 40C, 1–5 (2014).

    Article  Google Scholar 

  88. Becker, J. B., Prendergast, B. J. & Liang, J. W. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol. Sex Differences 7, 34 (2016).

    Article  Google Scholar 

  89. Machida, T., Yonezawa, Y. & Noumura, T. Age-associated changes in plasma testosterone levels in male mice and their relation to social dominance or subordinance. Hormones Behav. 15, 238–245 (1981).

    Article  CAS  Google Scholar 

  90. Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J. & Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 575, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Becker, J. B. & Chartoff, E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 44, 166–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D. & de Vries, G. J. Sex differences in the brain: the not so inconvenient truth. J. Neurosci. 32, 2241–2247 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Beltz, A. M., Beery, A. K. & Becker, J. B. Analysis of sex differences in pre-clinical and clinical data sets. Neuropsychopharmacology 44, 2155–2158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Galea, L. A. M., Choleris, E., Albert, A. Y. K., McCarthy, M. M. & Sohrabji, F. The promises and pitfalls of sex difference research. Front. Neuroendocrinol. 56, 100817 (2020).

    Article  PubMed  Google Scholar 

  95. Miller, L. R. et al. Considering sex as a biological variable in preclinical research. FASEB J. 31, 29–34 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rebecca M. Shansky or Anne Z. Murphy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Liisa Galea, Margaret McCarthy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shansky, R.M., Murphy, A.Z. Considering sex as a biological variable will require a global shift in science culture. Nat Neurosci 24, 457–464 (2021). https://doi.org/10.1038/s41593-021-00806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-021-00806-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing