Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrasonic signals associated with different types of social behavior of mice

Abstract

Communication plays an integral role in human social dynamics and is impaired in several neurodevelopmental disorders. Mice are used to study the neurobiology of social behavior; however, the extent to which mouse vocalizations influence social dynamics has remained elusive because it is difficult to identify the vocalizing animal among mice involved in a group interaction. By tracking the ultrasonic vocal behavior of individual mice and using an algorithm developed to group phonically similar signals, we showed that distinct patterns of vocalization emerge as male mice perform specific social actions. Mice dominating other mice were more likely to emit different vocal signals than mice avoiding social interactions. Furthermore, we showed that the patterns of vocal expression influence the behavior of the socially engaged partner but do not influence the behavior of other animals in the cage. These findings clarify the function of mouse communication by revealing a communicative ultrasonic signaling repertoire.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dynamic behavioral repertoires.
Fig. 2: Localization of vocal signals during social behavior.
Fig. 3: Categories of vocal signals.
Fig. 4: Quantification of vocal repertoires.
Fig. 5: Examples of vocal emission during distinct behaviors.
Fig. 6: Behaviorally dependent vocal emission.
Fig. 7: Decoding behavior on the basis of vocal emission.
Fig. 8: Vocalizing alters the behavior of an engaged social partner.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All code that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. 1.

    Owen-Smith, N. Territoriality in the white rhinoceros (Ceratotherium simum) Burchell. Nature 231, 294–296 (1971).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Pizzari, T. & Birkhead, T. R. Female feral fowl eject sperm of subdominant males. Nature 405, 787–789 (2000).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Chen, P. & Hong, W. Neural circuit mechanisms of social behavior. Neuron 98, 16–30 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Bahrami, B. et al. Optimally interacting minds. Science 329, 1081–1085 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Seyfarth, R. M., Cheney, D. L. & Marler, P. Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science 210, 801–803 (1980).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Bradbury, J. W. & Vehrencamp, S. L. Principles of Animal Communication (Sinauer Associates, 1998).

  7. 7.

    Gruters, K. G. & Groh, J. M. Sounds and beyond: multisensory and other non-auditory signals in the inferior colliculus. Front. Neural Circuits 6, 96 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Marlin, B. J. et al. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520, 499–504 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Wolpert, D. M., Doya, K. & Kawato, M. A unifying computational framework for motor control and social interaction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 593–602 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Li, Y. et al. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171, 1176–1190 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Remedios, R. et al. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature 550, 388–392 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Kingsbury, L. et al. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178, 429–446 (2019).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Hong, W. et al. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc. Natl Acad. Sci. USA 112, E5351–E5360 (2015).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Sales, G. D. Ultrasound and mating behaviour in rodents with some observations on other behavioural situations. J. Zool. 168, 149–164 (1972).

    Google Scholar 

  15. 15.

    Holy, T. E. & Guo, Z. Ultrasonic songs of male mice. PLoS Biol. 3, e386 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Shepard, K. N. & Liu, R. C. Experience restores innate female preference for male ultrasonic vocalizations. Genes Brain Behav. 10, 28–34 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Pomerantz, S. M., Nunez, A. A. & Bean, N. J. Female behavior is affected by male ultrasonic vocalizations in house mice. Physiol. Behav. 31, 91–96 (1983).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Mahrt, E. J., Perkel, D. J., Tong, L., Rubel, E. W. & Portfors, C. V. Engineered deafness reveals that mouse courtship vocalizations do not require auditory experience. J. Neurosci. 33, 5573–5583 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Coffey, K. R., Marx, R. G. & Neumaier, J. F. DeepSqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44, 859–868 (2019).

    PubMed  Article  Google Scholar 

  20. 20.

    Chabout, J. et al. Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One 7, e29401 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Hanson, J. L. & Hurley, L. M. Female presence and estrous state influence mouse ultrasonic courtship vocalizations. PLoS One 7, e40782 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Sugimoto, H. et al. A role for strain differences in waveforms of ultrasonic vocalizations during male–female interaction. PLoS One 6, e22093 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Grimsley, J. M., Monaghan, J. J. & Wenstrup, J. J. Development of social vocalizations in mice. PLoS One 6, e17460 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Neunuebel, J. P., Taylor, A. L., Arthur, B. J. & Egnor, S. R. Female mice ultrasonically interact with males during courtship displays. eLife 4, e06203 (2015).

  25. 25.

    Ohayon, S., Avni, O., Taylor, A. L., Perona, P. & Roian Egnor, S. E. Automated multi-day tracking of marked mice for the analysis of social behaviour. J. Neurosci. Methods 219, 10–19 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S. & Branson, K. JAABA: interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10, 64–67 (2013).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Warren, M. R., Sangiamo, D. T. & Neunuebel, J. P. High channel count microphone array accurately and precisely localizes ultrasonic signals from freely-moving mice. J. Neurosci. Methods 297, 44–60 (2018).

    PubMed  Article  Google Scholar 

  28. 28.

    Coen, P. et al. Dynamic sensory cues shape song structure in Drosophila. Nature 507, 233–237 (2014).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Silverman, J. L., Yang, M., Lord, C. & Crawley, J. N. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 11, 490–502 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Warren, M. R., Spurrier, M. S., Roth, E. D. & Neunuebel, J. P. Sex differences in vocal communication of freely interacting adult mice depend upon behavioral context. PLoS One 13, e0204527 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Stern, S., Kirst, C. & Bargmann, C. I. Neuromodulatory control of long-term behavioral patterns and individuality across development. Cell 171, 1649–1662 (2017).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Frank, M. J., Doll, B. B., Oas-Terpstra, J. & Moreno, F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat. Neurosci. 12, 1062–1068 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Favaro, L., Gamba, M., Gili, C. & Pessani, D. Acoustic correlates of body size and individual identity in banded penguins. PLoS One 12, e0170001 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Stoeger, A. S. & Baotic, A. Information content and acoustic structure of male African elephant social rumbles. Sci. Rep. 6, 27585 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Rudorf, S. et al. Neural mechanisms underlying individual differences in control-averse behavior. J. Neurosci. 38, 5196–5208 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Johnson, K. R., Erway, L. C., Cook, S. A., Willott, J. F. & Zheng, Q. Y. A major gene affecting age-related hearing loss in C57BL/6J mice. Hear. Res. 114, 83–92 (1997).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Portfors, C. V., Roberts, P. D. & Jonson, K. Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 162, 486–500 (2009).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Galindo-Leon, E. E., Lin, F. G. & Liu, R. C. Inhibitory plasticity in a lateral band improves cortical detection of natural vocalizations. Neuron 62, 705–716 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Shepard, K. N., Lin, F. G., Zhao, C. L., Chong, K. K. & Liu, R. C. Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons. J. Neurosci. 35, 2636–2645 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Neilans, E. G., Holfoth, D. P., Radziwon, K. E., Portfors, C. V. & Dent, M. L. Discrimination of ultrasonic vocalizations by CBA/CaJ mice (Mus musculus) is related to spectrotemporal dissimilarity of vocalizations. PLoS One 9, e85405 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Tschida, K. et al. A specialized neural circuit gates social vocalizations in the mouse. Neuron 103, 459–472 (2019).

  42. 42.

    Wang, F. et al. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Moy, S. S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287–302 (2004).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M. & Mainen, Z. F. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat. Neurosci. 17, 1455–1462 (2014).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Berman, G. J. Measuring behavior across scales. BMC Biol. 16, 23 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped behaviour of freely moving fruit flies. J. R. Soc. Interface 11, 20140672 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Marques, J. C., Lackner, S., Felix, R. & Orger, M. B. Structure of the zebrafish locomotor repertoire revealed with unsupervised behavioral clustering. Curr. Biol. 28, 181–195 (2018).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Morton, E. S. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am. Naturalist 111, 855–869 (1977).

    Article  Google Scholar 

  51. 51.

    König, B. Fitness effects of communal rearing in house mice: the role of relatedness versus familiarity. Anim. Behav. 48, 1449–1457 (1994).

    Article  Google Scholar 

  52. 52.

    Seagraves, K. M., Arthur, B. J. & Egnor, S. E. Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues. J. Exp. Biol. 219, 1437–1448 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Percival, D. B. & Walden, A. T. Spectral Analysis for Physical Applications (Cambridge University Press, 1993).

  54. 54.

    Grant, E. C. & Mackintosh, J. H. A comparison of the social postures of some common laboratory rodents. Behaviour 21, 246–259 (1963).

    Article  Google Scholar 

  55. 55.

    Van Oortmerssen, G. A. Biological significance, genetics and evolutionary origin of variability in behaviour within and between inbred strains of mice (Mus musculus). A behaviour genetic study. Behaviour 38, 1–92 (1971).

    PubMed  Article  Google Scholar 

  56. 56.

    Miczek, K. A., Maxson, S. C., Fish, E. W. & Faccidomo, S. Aggressive behavioral phenotypes in mice. Behav. Brain Res. 125, 167–181 (2001).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Weissbrod, A. et al. Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment. Nat. Commun. 4, 2018 (2013).

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Tabler, J. M. et al. Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx. eLife 6, e19153 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Lemasson, B. H., Anderson, J. J. & Goodwin, R. A. Collective motion in animal groups from a neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention. J. Theor. Biol. 261, 501–510 (2009).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Hikosaka, O. The habenula: from stress evasion to value-based decision-making. Nat. Rev. Neurosci. 11, 503–513 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Thura, D., Cos, I., Trung, J. & Cisek, P. Context-dependent urgency influences speed–accuracy trade-offs in decision-making and movement execution. J. Neurosci. 34, 16442–16454 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Chang, S. W. et al. Neural mechanisms of social decision-making in the primate amygdala. Proc. Natl Acad. Sci. USA 112, 16012–16017 (2015).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Chabout, J., Sarkar, A., Dunson, D. B. & Jarvis, E. D. Male mice song syntax depends on social contexts and influences female preferences. Front. Behav. Neurosci. 9, 76 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Neunuebel, A. Griffin, M. Duncan, M. Smear, R. Egnor, J. Knierim and R. Clein for helpful comments on the manuscript and the staffs of the Life Science Research Facility and the University of Delaware Information Technologies for assistance. We thank R. Egnor and G. Berman for providing software for normalizing vocal signals, D. Kelly for insightful discussions and J. Farmer and J. Quesenberry for help building lab equipment. This work was funded by the National Institutes of Health (2P20GM103653), the University of Delaware Research Foundation and Delaware’s General University Research Program.

Author information

Affiliations

Authors

Contributions

J.P.N. designed the study. D.T.S. and M.R.W. collected and processed the data. D.T.S. and J.P.N. analyzed the data. D.T.S. and J.P.N. wrote the manuscript. M.R.W. provided feedback on the manuscript.

Corresponding author

Correspondence to Joshua P. Neunuebel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Robert Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25.

Reporting Summary

Supplementary Video 1

The video shows a representative example of a male mouse walking. Behaviors were extracted using JAABA. Because increasing the contrast between the white bedding and the black fur of the mouse improves our automated tracking system (Motr), the video recording was intentionally oversaturated. Each recorded male was observed walking (n = 22).

Supplementary Video 2

The video shows a representative example of two male mice circling each other. Mutual circles were observed between males in each recording (males: n = 22; recordings: n = 11).

Supplementary Video 3

The video shows a representative example of two male mice fighting. Fights were observed between males in each recording (males: n = 22; recordings: n = 11).

Supplementary Video 4

The video shows a representative example of a male mouse chasing a female. Each recorded male was observed chasing females (males: n = 22; recordings: n = 11).

Supplementary Video 5

The video shows a representative example of a male mouse running away from the other male. Fleeing was observed for each male recorded (males: n = 22; recordings: n = 11).

Supplementary Video 6

The video shows a representative example of a mouse chasing the other male. Each recorded male was observed chasing the other male (males: n = 22; recordings: n = 11).

Supplementary Video 7

The proportion of each vocal signal type within each behavior was calculated for each mouse. These values were then collapsed across mice. Average ± s.e.m.; n = 3,586 biologically independent samples analyzed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sangiamo, D.T., Warren, M.R. & Neunuebel, J.P. Ultrasonic signals associated with different types of social behavior of mice. Nat Neurosci 23, 411–422 (2020). https://doi.org/10.1038/s41593-020-0584-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing