Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA transport and local translation in neurodevelopmental and neurodegenerative disease

Abstract

Neurons decentralize protein synthesis from the cell body to support the active metabolism of remote dendritic and axonal compartments. The neuronal RNA transport apparatus, composed of cis-acting RNA regulatory elements, neuronal transport granule proteins, and motor adaptor complexes, drives the long-distance RNA trafficking required for local protein synthesis. Over the past decade, advances in human genetics, subcellular biochemistry, and high-resolution imaging have implicated each member of the apparatus in several neurodegenerative diseases, establishing failed RNA transport and associated processes as a unifying pathomechanism. In this review, we deconstruct the RNA transport apparatus, exploring each constituent’s role in RNA localization and illuminating their unique contributions to neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The RNA transport apparatus in health and disease.
Fig. 2: Neuronal cis-acting RNA regulatory element structure, function, and dysfunction.
Fig. 3: Neuronal transport granule properties.
Fig. 4: Motor adaptors for RNA transport.
Fig. 5: The RNA transport apparatus and local metabolism.

Similar content being viewed by others

References

  1. Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Cagnetta, R., Frese, C. K., Shigeoka, T., Krijgsveld, J. & Holt, C. E. Rapid cue-specific remodeling of the nascent axonal proteome. Neuron 99, 29–46 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1256 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Martin, K. C. et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Schanzenbächer, C. T., Sambandan, S., Langer, J. D. & Schuman, E. M. Nascent proteome remodeling following homeostatic scaling at hippocampal synapses. Neuron 92, 358–371 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fallini, C., Donlin-Asp, P. G., Rouanet, J. P., Bassell, G. J. & Rossoll, W. Deficiency of the survival of motor neuron protein impairs mrna localization and local translation in the growth cone of motor neurons. J. Neurosci. 36, 3811–3820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. López-Erauskin, J. et al. ALS/FTD-linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS. Neuron 100, 816–830 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734 (2018).

  13. Boehringer, A. & Bowser, R. RNA nucleocytoplasmic transport defects in neurodegenerative diseases. Adv. Neurobiol. 10, 509–518 (2018).

    Google Scholar 

  14. Taylor, J. P., Brown, R. H. & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. F. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84, 292–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, H. L. et al. Neurotrophin-induced transport of a β-actin mRNP complex increases β-actin levels and stimulates growth cone motility. Neuron 31, 261–275 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Nicastro, G. et al. Mechanism of β-actin mRNA recognition by ZBP1. Cell Rep. 18, 1187–1199 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miura, P., Shenker, S., Andreu-Agullo, C., Westholm, J. O. & Lai, E. C. Widespread and extensive lengthening of 39 UTRs in the mammalian brain. Genome Res. 23, 812–825 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taliaferro, J. M. et al. Distal alternative last exons localize mrnas to neural projections. Mol. Cell 61, 821–833 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tushev, G. et al. Alternative 3′ UTRs modify the localization, regulatory potential, stability, and plasticity of mrnas in neuronal compartments. Neuron 98, 495–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. An, J. J. et al. Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134, 175–187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andreassi, C. et al. 3′UTR cleavage of transcripts localized in axons of sympathetic neurons. Preprint at bioRxiv https://doi.org/10.1101/170100 (2020).

  23. Vejnar, C. E. et al. Genome wide analysis of 3′ UTR sequence elements and proteins regulating mRNA stability during maternal-to-zygotic transition in zebrafish. Genome Res. 29, 1100–1114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koh, W. S., Porter, J. R. & Batchelor, E. Tuning of mRNA stability through altering 3′-UTR sequences generates distinct output expression in a synthetic circuit driven by p53 oscillations. Sci. Rep. 9, 1–8 (2019).

    Article  Google Scholar 

  25. Merianda, T. T., Gomes, C., Yoo, S., Vuppalanchi, D. & Twiss, J. L. Axonal localization of neuritin/CPG15 mRNA in neuronal populations through distinct 5′ and 3′ UTR elements. J. Neurosci. 33, 13735–13742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meer, E. J. et al. Identification of a cis-acting element that localizes mRNA to synapses. Proc. Natl Acad. Sci. USA 109, 4639–4644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rotem, N. et al. ALS along the axons - expression of coding and noncoding RNA differs in axons of ALS models. Sci. Rep. 7, 1–17 (2017).

    Article  CAS  Google Scholar 

  28. Forrest, K. M. & Gavis, E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr. Biol. 13, 654–658 (2003).

    Article  CAS  Google Scholar 

  29. Zaessinger, S., Busseau, I. & Simonelig, M. Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadnylation by Smaug/CCR4. Development 133, 4573–4583 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Tadros, W. et al. SMAUG Is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev. Cell 12, 143–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Han, S. et al. RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc. Natl Acad. Sci. USA 117, 22068–22079 (2020).

  32. Mukherjee, J. et al. β-actin mRNA interactome mapping by proximity biotinylation. Proc. Natl Acad. Sci. USA 116, 12863–12872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kreiter, N. et al. Age-dependent neurodegeneration and organelle transport deficiencies in mutant TDP43 patient-derived neurons are independent of TDP43 aggregation. Neurobiol. Dis. 115, 167–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Daigle, G. G. et al. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum. Mol. Genet. 22, 1193–1205 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Voigt, A. et al. TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS ONE 5, e12247 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Miller, S. et al. Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Chia, P. H. et al. A homozygous loss-of-function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability. eLife 7, 1–19 (2018).

    Article  Google Scholar 

  40. Merkurjev, D. et al. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat. Neurosci. 21, 1004–1014 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Darnell, R. B. RNA protein interaction in neurons. Annu. Rev. Neurosci. 36, 243–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knowles, R. B. et al. Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krichevsky, A. M. & Kosik, K. S. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32, 683–696 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Turner-Bridger, B. et al. Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc. Natl Acad. Sci. USA 115, E9697–E9706 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Batish, M., Van Den Bogaard, P., Kramer, F. R. & Tyagi, S. Neuronal mRNAs travel singly into dendrites. Proc. Natl Acad. Sci. USA 109, 4645–4650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mikl, M., Vendra, G. & Kiebler, M. A. Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers. EMBO Rep. 12, 1077–1084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin, K. C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Donlin-Asp, P. G. et al. The survival of motor neuron protein acts as a molecular chaperone for mRNP assembly. Cell Rep. 18, 1660–1673 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rossoll, W. et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163, 801–812 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Conicella, A. E. et al. TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proc. Natl Acad. Sci. USA 117, 5883–5894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alami, N. H. et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. F. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc. Natl Acad. Sci. USA 114, E2466–E2475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu-Yesucevitz, L. Q. et al. ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor. J. Neurosci. 34, 4167–4174 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fujii, R. & Takumi, T. TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J. Cell Sci. 118, 5755–5765 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Yasuda, K., Clatterbuck-Soper, S. F., Jackrel, M. E., Shorter, J. & Mili, S. FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination. J. Cell Biol. 216, 1015–1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jun, M. H. et al. Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS mutant R521C-positive aggregates contributes to neurite degeneration upon oxidative stress. Sci. Rep. 7, 1–15 (2017).

    Article  CAS  Google Scholar 

  61. Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 921, 918–921 (2018).

    Article  CAS  Google Scholar 

  62. Ascano, M. et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Napoli, I. et al. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042–1054 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C. & Bassell, G. J. Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J. Neurosci. 24, 2648–2655 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Antar, L. N., Dictenberg, J. B., Plociniak, M., Afroz, R. & Bassell, G. J. Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav. 4, 350–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Dictenberg, J. B., Swanger, S. A., Antar, L. N., Singer, R. H. & Bassell, G. J. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev. Cell 14, 926–939 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Tsang, B. et al. Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc. Natl Acad. Sci. USA 116, 4218–4227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Banerjee, A., Ifrim, M. F., Valdez, A. N., Raj, N. & Bassell, G. J. Aberrant RNA translation in fragile X syndrome: from FMRP mechanisms to emerging therapeutic strategies. Brain Res. 1693, 24–36 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Udagawa, T. et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat. Med. 19, 1473–1477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ross Buchan, J. MRNP granules assembly, function, and connections with disease. RNA Biol. 11, 1019–1030 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Davidovic, L. et al. The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum. Mol. Genet. 16, 3047–3058 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Fukuda, Y. et al. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. J. Cell Biol. 220, e202005051 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  75. Wu, H., Zhou, J., Zhu, T., Cohen, I. & Dictenberg, J. A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice. J. Biol. Chem. 295, 6605–6628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baumann, S. et al. A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs. Sci. Adv. 6, eaaz1588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bianco, A., Dienstbier, M., Salter, H. K., Gatto, G. & Bullock, S. L. Bicaudal-D regulates fragile X mental retardation protein levels, motility, and function during neuronal morphogenesis. Curr. Biol. 20, 1487–1492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dienstbier, M., Boehl, F., Li, X. & Bullock, S. L. Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev. 23, 1546–1558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baumann, S., Pohlmann, T., Jungbluth, M., Brachmann, A. & Feldbrugge, M. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J. Cell Sci. 125, 2740–2752 (2012).

    CAS  PubMed  Google Scholar 

  80. Baumann, S., Ko’nig, J., Koepke, J. & Feldbru’gge, M. Endosomal transport of septin mRNA and protein indicates local translation on endosomes and is required for correct septin filamentation. EMBO Rep. 15, 94–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Pohlmann, T., Baumann, S., Haag, C., Albrecht, M. & Feldbrügge, M. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. eLife 4, 1–27 (2015).

    Article  Google Scholar 

  82. Gershoni-Emek, N. et al. Localization of RNAi machinery to axonal branch points and growth cones is facilitated by mitochondria and is disrupted in ALS. Front. Mol. Neurosci. 11, 1–17 (2018).

    Article  CAS  Google Scholar 

  83. Corradi, E. et al. Axonal precursor miRNA s hitchhike on endosomes and locally regulate the development of neural circuits. EMBO J. 39, 1–24 (2020).

    Article  CAS  Google Scholar 

  84. Cioni, J. et al. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176, 56–72 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liao, Y. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vukoja, A. et al. Presynaptic biogenesis requires axonal transport of lysosome-related vesicles. Neuron 99, 1216–1232 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Zala, D. et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152, 479–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Oates, E. C. et al. Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. Am. J. Hum. Genet. 92, 965–973 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Verhoeven, K. et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot–Marie–Tooth type 2B neuropathy. Am. J. Hum. Genet. 1, 722–727 (2003).

    Article  Google Scholar 

  90. Pu, J., Guardia, C. M., Keren-Kaplan, T. & Bonifacino, J. S. Mechanisms and functions of lysosome positioning. J. Cell Sci. 129, 4329–4339 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Smith, B. N. et al. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci. Transl. Med. 9, eaad9157 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhang, K. et al. ANXA11mutations prevail in Chinese ALS patients with and without cognitive dementia. Neurol. Genet. 4, e237–e239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, X., Wu, C., He, J., Zhang, N. & Fan, D. Two rare variants of the ANXA11 gene identified in Chinese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 74, 235.e9–235.e12 (2019).

    Article  CAS  Google Scholar 

  94. Willis, D. E. et al. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J. Cell Biol. 178, 965–980 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huttelmaier, S. et al. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 1–4 (2005).

    Article  CAS  Google Scholar 

  96. Monahan, Z. et al. Phosphorylation of the FUS low‐complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ryan, V. H. et al. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning & reduces neurodegeneration. EMBO J. https://doi.org/10.15252/embj.2020105001 (2020).

  98. Nonaka, T. et al. Phosphorylation of TAR DNA-binding protein of 43 kDa (TDP-43) by truncated casein kinase 1δ triggers mislocalization and accumulation of TDP-43. J. Biol. Chem. 291, 5473–5483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Amaya, J., Ryan, V. H. & Fawzi, N. L. The SH3 domain of Fyn kinase interacts with and induces liquid–liquid phase separation of the low-complexity domain of hnRNPA2. J. Biol. Chem. 293, 19522–19531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Narayanan, U. et al. FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J. Neurosci. 27, 14349–14357 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Narayanan, U. et al. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J. Biol. Chem. 283, 18478–18482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fontes, M. M. et al. Activity-dependent regulation of alternative cleavage and polyadenylation during hippocampal long-term potentiation. Sci. Rep. 7, 1–13 (2017).

    Article  CAS  Google Scholar 

  104. Udagawa, T. et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol. Cell 47, 253–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sambandan, S. et al. Activity-dependent spatially localized miRNA maturation in neuronal dendrites. Science 355, 634–637 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron 51, 685–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Zeitelhofer, M. et al. Dynamic interaction between P-bodies and transport ribonucleoprotein particles in dendrites of mature hippocampal neurons. J. Neurosci. 28, 7555–7562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kwak, J. E. et al. GLD2 poly(A) polymerase is required for long-term memory. Proc. Natl Acad. Sci. USA 105, 14644–14649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Biever, A. et al. Monosomes actively translate synaptic mRNAs in neuronal processes. Science 367, eaay4991 (2020).

  110. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178, 473–490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shigeoka, T. et al. On-site ribosome remodeling by locally synthesized ribosomal proteins in axons. Cell Rep. 29, 3605–3619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blackwell, E., Zhang, X. & Ceman, S. Arginines of the RGG box regulate FMRP association with polyribosomes and mRNA. Hum. Mol. Genet. 19, 1314–1323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Anderson, P. & Kedersha, N. RNA granules. J. Cell Biol. 172, 803–808 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tcherkezian, J., Brittis, P. A., Thomas, F., Roux, P. P. & Flanagan, J. G. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141, 632–644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Koppers, M. et al. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. eLife 8, 1–27 (2019).

    Article  Google Scholar 

  116. Higuchi, Y., Ashwin, P., Roger, Y. & Steinberg, G. Early endosome motility spatially organizes polysome distribution. J. Cell Biol. 204, 343–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sephton, C. F. et al. Activity-dependent FUS dysregulation disrupts. Proc. Natl Acad. Sci. USA 111, E4769–E4778 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yoon, B. C. et al. Local translation of extranuclear lamin B promotes axon maintenance. Cell 148, 752–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sudmant, P. H., Lee, H., Dominguez, D., Heiman, M. & Burge, C. B. Widespread accumulation of ribosome-associated isolated 3′ UTRs in neuronal cell populations of the aging brain. Cell Rep. 25, 2447–2456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Frankel, L. B., Lubas, M. & Lund, A. H. Emerging connections between RNA and autophagy. Autophagy 13, 3–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Onozato, T. et al. Axonal TDP-43 aggregates in sporadic amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 42, 561–572 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Glock, C. et al. The mRNA translation landscape in the synaptic neuropil. Preprint at bioRxiv https://doi.org/10.1101/2020.06.09.141960 (2020).

  124. Yasuda, K. et al. The RNA-binding protein Fus directs translation of localized mRNAs in APC-RNP granules. J. Cell Biol. 203, 737–746 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu, B., Eliscovich, C., Yoon, Y. J. & Singer, R. H. Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430–1435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Farfel-Becker, T. et al. Neuronal soma-derived degradative lysosomes are continuously delivered to distal axons to maintain local degradation capacity. Cell Rep. 28, 51–64 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bingol, B. & Schuman, E. M. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441, 1144–1148 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Wu, A. Saric, J. Nixon-Abell, S. Qamar, S. Humble and J. Bonifacino for their careful reading and helpful comments on the manuscript, and we thank all of the laboratories and scientists who contributed to the data and discoveries described here. This work was supported by National Institute on Aging grant F30AG060722 (to M.S.F.), the NIH-Oxford-Cambridge Scholars Program (to M.S.F.), the El-Hibri Foundation (to M.S.F.), the Howard Hughes Medical Institute (to J.L.-S.) and the NIH Intramural Research Program (to M.E.W.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer Lippincott-Schwartz or Michael E. Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Gary Bassell, Christine Holt, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandopulle, M.S., Lippincott-Schwartz, J. & Ward, M.E. RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat Neurosci 24, 622–632 (2021). https://doi.org/10.1038/s41593-020-00785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-00785-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing