Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability

Abstract

The modification of synaptic strength produced by long-term potentiation (LTP) is widely thought to underlie memory storage. Indeed, given that hippocampal pyramidal neurons have >10,000 independently modifiable synapses, the potential for information storage by synaptic modification is enormous. However, recent work suggests that CREB-mediated global changes in neuronal excitability also play a critical role in memory formation. Because these global changes have a modest capacity for information storage compared with that of synaptic plasticity, their importance for memory function has been unclear. Here we review the newly emerging evidence for CREB-dependent control of excitability and discuss two possible mechanisms. First, the CREB-dependent transient change in neuronal excitability performs a memory-allocation function ensuring that memory is stored in ways that facilitate effective linking of events with temporal proximity (hours). Second, these changes may promote cell-assembly formation during the memory-consolidation phase. It has been unclear whether such global excitability changes and local synaptic mechanisms are complementary. Here we argue that the two mechanisms can work together to promote useful memory function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CREB increases neuronal excitability.
Fig. 2: Allocate-to-link hypothesis.
Fig. 3: CREB-dependent enhancement of excitability is controlled both by dendritic LTP events and by somatic spiking, an enhancement that facilitates ensemble formation.

References

  1. 1.

    Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949).

  2. 2.

    Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Bliss, T. V. P. & Collingridge, G. L. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol. Brain 6, 5 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Nakazawa, K., McHugh, T. J., Wilson, M. A. & Tonegawa, S. NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361–372 (2004).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Rossetti, T. et al. Memory erasure experiments indicate a critical role of CAMKII in memory storage. Neuron 96, 207–216 (2017).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Lee, Y.-S. & Silva, A. J. The molecular and cellular biology of enhanced cognition. Nat. Rev. Neurosci. 10, 126–140 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Morris, R. G. M. et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 773–786 (2003).

  12. 12.

    Castellucci, V. & Kandel, E. R. Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science 194, 1176–1178 (1976).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299, 413–417 (1982).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Alkon, D. L. Changes of membrane currents during learning. J. Exp. Biol. 112, 95–112 (1984).

    CAS  PubMed  Google Scholar 

  15. 15.

    Disterhoft, J. F., Coulter, D. A. & Alkon, D. L. Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proc. Natl. Acad. Sci. USA 83, 2733–2737 (1986).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Josselyn, S. A., Köhler, S. & Frankland, P. W. Finding the engram. Nat. Rev. Neurosci. 16, 521–534 (2015).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Yu, X.-W., Oh, M. M. & Disterhoft, J. F. CREB, cellular excitability, and cognition: implications for aging. Behav. Brain Res. 322, 206–211 (2017).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kim, J.-I., Cho, H.-Y., Han, J.-H. & Kaang, B.-K. Which neurons will be the engram-activated neurons and/or more excitable neurons? Exp. Neurobiol. 25, 55–63 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Oh, M. M. & Disterhoft, J. F. Increased excitability of both principal neurons and interneurons during associative learning. Neuroscientist 21, 372–384 (2015).

    Article  PubMed  Google Scholar 

  20. 20.

    Kandel, E. R. Genes, nerve cells, and the remembrance of things past. J. Neuropsychiatry Clin. Neurosci. 1, 103–125 (1989).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Impey, S. et al. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982 (1996).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Bernabeu, R. et al. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. USA 94, 7041–7046 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Yin, J. C. & Tully, T. CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264–268 (1996).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Guzowski, J. F. & McGaugh, J. L. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693–2698 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Peters, M. et al. RNA interference in hippocampus demonstrates opposing roles for CREB and PP1α in contextual and temporal long-term memory. Genes Brain Behav. 8, 320–329 (2009).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yin, J. C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Josselyn, S. A. et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412 (2001).

    CAS  PubMed  Google Scholar 

  30. 30.

    Guzowski, J. F. & Worley, P. F. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). Curr. Protoc. Neurosci. 15, 1.8.1–1.8.16 (2001).

    Google Scholar 

  31. 31.

    Han, J.-H. et al. Neuronal competition and selection during memory formation. Science 316, 457–460 (2007).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Yiu, A. P. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Park, S. et al. Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41, 2987–2993 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lopez de Armentia, M. et al. cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J. Neurosci. 27, 13909–13918 (2007).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Dong, Y. et al. CREB modulates excitability of nucleus accumbens neurons. Nat. Neurosci. 9, 475–477 (2006).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Storm, J. F. Potassium currents in hippocampal pyramidal cells. Prog. Brain Res. 83, 161–187 (1990).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Gross, C., Yao, X., Pong, D. L., Jeromin, A. & Bassell, G. J. Fragile X mental retardation protein regulates protein expression and mRNA translation of the potassium channel Kv4.2. J. Neurosci. 31, 5693–5698 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Rogerson, T. et al. Molecular and cellular mechanisms for trapping and activating emotional memories. PLoS One 11, e0161655 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Alberini, C. M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121–145 (2009).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kim, J., Kwon, J.-T., Kim, H.-S. & Han, J.-H. CREB and neuronal selection for memory trace. Front. Neural Circuits 7, 44 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Turrigiano, G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Silva, A. J., Zhou, Y., Rogerson, T., Shobe, J. & Balaji, J. Molecular and cellular approaches to memory allocation in neural circuits. Science 326, 391–395 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

  46. 46.

    Rashid, A. J. et al. Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Yokose, J. et al. Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science 355, 398–403 (2017).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    O’Connor, D. H., Wittenberg, G. M. & Wang, S. S.-H. Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc. Natl. Acad. Sci. USA 102, 9679–9684 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Debanne, D., Gähwiler, B. H. & Thompson, S. M. Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. J. Neurosci. 19, 10664–10671 (1999).

    CAS  PubMed  Google Scholar 

  50. 50.

    Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    PubMed  Google Scholar 

  52. 52.

    Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Ego-Stengel, V. & Wilson, M. A. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Atherton, L. A., Dupret, D. & Mellor, J. R. Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci. 38, 560–570 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Brandalise, F., Carta, S., Helmchen, F., Lisman, J. & Gerber, U. Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells. Nat. Commun. 7, 13480 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Ma, H. et al. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159, 281–294 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Dudek, S. M. & Fields, R. D. Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. USA 99, 3962–3967 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Zhai, S., Ark, E. D., Parra-Bueno, P. & Yasuda, R. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342, 1107–1111 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. & Tonegawa, S. Memory. Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Chen, S., Cai, D., Pearce, K., Sun, P. Y.-W., Roberts, A. C. & Glanzman, D. L. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. eLife 3, e03896 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Zovkic, I. B., Guzman-Karlsson, M. C. & Sweatt, J. D. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 20, 61–74 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Meadows, J. P. et al. Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Sci. Signal. 9, ra83 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Titley, H. K., Brunel, N. & Hansel, C. Toward a neurocentric view of learning. Neuron 95, 19–32 (2017).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Araki, Y., Zeng, M., Zhang, M. & Huganir, R. L. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85, 173–189 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Melgarejo da Rosa, M., Yuanxiang, P., Brambilla, R., Kreutz, M. R. & Karpova, A. Synaptic GluN2B/CaMKII-α signaling induces synapto-nuclear transport of ERK and Jacob. Front. Mol. Neurosci. 9, 66 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    El Gaamouch, F. et al. Interaction between αCaMKII and GluN2B controls ERK-dependent plasticity. J. Neurosci. 32, 10767–10779 (2012).

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Tang, S. & Yasuda, R. Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron 93, 1315–1324 (2017).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (grants U01NS090583, R56NS096710, R01DA043195, R01NS103168, U19NS104590, and NSF IOS-1526941 to J.L.; grants 2RF1AG013622-21 and R01MH113071 to A.J.S.) and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to A.J.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alcino J. Silva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lisman, J., Cooper, K., Sehgal, M. et al. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21, 309–314 (2018). https://doi.org/10.1038/s41593-018-0076-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing