Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake

Published online:


Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (OxtrPBN neurons) are key regulators of fluid satiation. Chemogenetic activation of OxtrPBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, OxtrPBN neurons were activated by fluid satiation and hypertonic saline injection. OxtrPBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (OxtPVH neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated OxtrPBN neurons. Our results suggest that OxtrPBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.

  • Subscribe to Nature Neuroscience for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Lee, H. J., Macbeth, A. H., Pagani, J. H. & Young, W. S. III Oxytocin: the great facilitator of life. Prog. Neurobiol. 88, 127–151 (2009).

  2. 2.

    Arletti, R., Benelli, A. & Bertolini, A. Oxytocin inhibits food and fluid intake in rats. Physiol. Behav. 48, 825–830 (1990).

  3. 3.

    Blevins, J. E., Eakin, T. J., Murphy, J. A., Schwartz, M. W. & Baskin, D. G. Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res. 993, 30–41 (2003).

  4. 4.

    Stricker, E. M. & Verbalis, J. G. Central inhibition of salt appetite by oxytocin in rats. Regul. Pept. 66, 83–85 (1996).

  5. 5.

    Rigatto, K., Puryear, R., Bernatova, I. & Morris, M. Salt appetite and the renin-angiotensin system: effect of oxytocin deficiency. Hypertension 42, 793–797 (2003).

  6. 6.

    Balment, R. J., Brimble, M. J. & Forsling, M. L. Release of oxytocin induced by salt loading and its influence on renal excretion in the male rat. J. Physiol. (Lond.) 308, 439–449 (1980).

  7. 7.

    Conrad, K. P., Gellai, M., North, W. G. & Valtin, H. Influence of oxytocin on renal hemodynamics and sodium excretion. Ann. NY Acad. Sci. 689, 346–362 (1993).

  8. 8.

    Verbalis, J. G., Mangione, M. P. & Stricker, E. M. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 128, 1317–1322 (1991).

  9. 9.

    McKinley, M. J. & Johnson, A. K. The physiological regulation of thirst and fluid intake. News Physiol. Sci. 19, 1–6 (2004).

  10. 10.

    Geerling, J. C. & Loewy, A. D. Central regulation of sodium appetite. Exp. Physiol. 93, 177–209 (2008).

  11. 11.

    Johnson, A. K. & Thunhorst, R. L. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front. Neuroendocrinol. 18, 292–353 (1997).

  12. 12.

    Verbalis, J. G. Disorders of body water homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 17, 471–503 (2003).

  13. 13.

    Gimpl, G. & Fahrenholz, F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683 (2001).

  14. 14.

    Fenselau, H. et al. A rapidly acting glutamatergic ARC →PVH satiety circuit postsynaptically regulated by α-MSH. Nat. Neurosci. 20, 42–51 (2017).

  15. 15.

    Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

  16. 16.

    Ohman, L. E. & Johnson, A. K. Lesions in lateral parabrachial nucleus enhance drinking to angiotensin II and isoproterenol. Am. J. Physiol. 251, R504–R509 (1986).

  17. 17.

    Callera, J. C. et al. GABAA receptor activation in the lateral parabrachial nucleus induces water and hypertonic NaCl intake. Neuroscience 134, 725–735 (2005).

  18. 18.

    Edwards, G. L. & Johnson, A. K. Enhanced drinking after excitotoxic lesions of the parabrachial nucleus in the rat. Am. J. Physiol. 261, R1039–R1044 (1991).

  19. 19.

    Menani, J. V., De Luca, L. A. Jr & Johnson, A. K. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R201–R210 (2014).

  20. 20.

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

  21. 21.

    Jarvie, B. C. & Palmiter, R. D. HSD2 neurons in the hindbrain drive sodium appetite. Nat. Neurosci. 20, 167–169 (2017).

  22. 22.

    Rinaman, L. et al. Dehydration anorexia is attenuated in oxytocin-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1791–R1799 (2005).

  23. 23.

    Kinsman, B. et al. Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1092–R1100 (2014).

  24. 24.

    Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Elucidating an affective pain circuit that creates a threat memory. Cell 162, 363–374 (2015).

  25. 25.

    Davern, P. J. & McKinley, M. J. Brain regions influenced by the lateral parabrachial nucleus in angiotensin II-induced water intake. Neuroscience 252, 410–419 (2013).

  26. 26.

    Matsuda, T. et al. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 20, 230–241 (2017).

  27. 27.

    Johnson, A. K., Cunningham, J. T. & Thunhorst, R. L. Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis. Clin. Exp. Pharmacol. Physiol. 23, 183–191 (1996).

  28. 28.

    Swanson, L. W. & Sawchenko, P. E. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6, 269–324 (1983).

  29. 29.

    Sutton, A. K. et al. Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus. J. Neurosci. 34, 15306–15318 (2014).

  30. 30.

    Smith, K. S., Bucci, D. J., Luikart, B. W. & Mahler, S. V. DREADDS: use and application in behavioral neuroscience. Behav. Neurosci. 130, 137–155 (2016).

  31. 31.

    Swanson, L. W. & Kuypers, H. G. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194, 555–570 (1980).

  32. 32.

    Menani, J. V. & Johnson, A. K. Cholecystokinin actions in the parabrachial nucleus: effects on thirst and salt appetite. Am. J. Physiol. 275, R1431–R1437 (1998).

  33. 33.

    Roman, C. W., Derkach, V. A. & Palmiter, R. D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 7, 11905 (2016).

  34. 34.

    Chen, Y., Lin, Y. C., Kuo, T. W. & Knight, Z. A. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160, 829–841 (2015).

  35. 35.

    Mandelblat-Cerf, Y. et al. Bidirectional anticipation of future osmotic challenges by vasopressin neurons. Neuron 93, 57–65 (2017).

  36. 36.

    McKinley, M. J., Denton, D. A., Nelson, J. F. & Weisinger, R. S. Dehydration induces sodium depletion in rats, rabbits, and sheep. Am. J. Physiol. 245, R287–R292 (1983).

  37. 37.

    Huang, W., Lee, S. L., Arnason, S. S. & Sjöquist, M. Dehydration natriuresis in male rats is mediated by oxytocin. Am. J. Physiol. 270, R427–R433 (1996).

  38. 38.

    McKinley, M. J. Adaptive appetites for salted and unsalted food in rats: differential effects of sodium depletion, DOCA and dehydration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1149–R1160 (2013).

  39. 39.

    Kutscher, C. Effect of hypertonic saline injections and water deprivation on drinking, serum osmolality and gut water. Physiol. Behav. 1, 259–268 (1966).

  40. 40.

    Huang, W., Lee, S. L. & Sjöquist, M. Natriuretic role of endogenous oxytocin in male rats infused with hypertonic NaCl. Am. J. Physiol. 268, R634–R640 (1995).

  41. 41.

    Saper, C. B. & Lowell, B. B. The hypothalamus. Curr. Biol. 24, R1111–R1116 (2014).

  42. 42.

    Stachniak, T. J., Trudel, E. & Bourque, C. W. Cell-specific retrograde signals mediate antiparallel effects of angiotensin II on osmoreceptor afferents to vasopressin and oxytocin neurons. Cell Rep. 8, 355–362 (2014).

  43. 43.

    Benelli, A., Bertolini, A. & Arletti, R. Oxytocin-induced inhibition of feeding and drinking: no sexual dimorphism in rats. Neuropeptides 20, 57–62 (1991).

  44. 44.

    Sanford, C. A. et al. A central amygdala CRF circuit facilitates learning about weak threats. Neuron 93, 164–178 (2017).

  45. 45.

    Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates (Elsevier Academic Press, Waltham, MA, USA, 2013).

  46. 46.

    Owen, S. F. et al. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500, 458–462 (2013).

  47. 47.

    Tang, Y. et al. Oxytocin activation of neurons in ventral tegmental area and interfascicular nucleus of mouse midbrain. Neuropharmacology 77, 277–284 (2014).

  48. 48.

    Mohammad, S. et al. Functional compensation between cholecystokinin-1 and -2 receptors in murine paraventricular nucleus neurons. J. Biol. Chem. 287, 39391–39401 (2012).

  49. 49.

    Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

  50. 50.

    Liedtke, W. B. et al. Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proc. Natl. Acad. Sci. USA 108, 12509–12514 (2011).

  51. 51.

    Resendez, S. L. et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 11, 566–597 (2016).

  52. 52.

    Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. Preprint at (2016).

Download references


We thank B. Roth and K. Deisseroth for AAV plasmid constructs. M. Chiang assisted with animal husbandry. S. Tsang and K. Kafer helped to generate the OxtrCre mice. We thank J. Chen for help with surgery for CalcaCre/+ experiments and C. Roman for help with surgery for CckCre/+ experiments. M. McKinley, B. Jarvie, C. Roman and members of the Palmiter lab provided helpful discussion and feedback. P.J.R. was supported by an Australian American Fellowship and a National Health and Medical Council of Australia CJ Martin Fellowship. C.A.C. was supported by a fellowship from Hope Funds for Cancer Research. R.D.P. was supported by a US National Institutes of Health grant (R01-DA24908). Inscopix provided the calcium-imaging equipment and supplies via their DECODE grant program.

Author information


  1. Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA

    • Philip J. Ryan
    • , Silvano I. Ross
    • , Carlos A. Campos
    • , Victor A. Derkach
    •  & Richard D. Palmiter
  2. Department of Biochemistry, University of Washington, Seattle, Washington, USA

    • Philip J. Ryan
    • , Silvano I. Ross
    • , Carlos A. Campos
    • , Victor A. Derkach
    •  & Richard D. Palmiter
  3. The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia

    • Philip J. Ryan


  1. Search for Philip J. Ryan in:

  2. Search for Silvano I. Ross in:

  3. Search for Carlos A. Campos in:

  4. Search for Victor A. Derkach in:

  5. Search for Richard D. Palmiter in:


P.J.R. and R.D.P. conceived and designed the study. P.J.R. performed and analyzed the experiments. S.I.R and P.J.R. performed the immunohistochemistry and counting of cells. V.A.D. performed electrophysiological experiments. C.A.C. performed GCaMP6 studies. R.D.P. generated OxtrCre mice and provided equipment and reagents. P.J.R. wrote the manuscript with input from R.D.P and other authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Philip J. Ryan or Richard D. Palmiter.

Integrated supplementary information

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–10 and Supplementary Tables 1 and 2

  2. Life Sciences Reporting Summary

  3. Supplementary Video 1

    Calcium fluorescence in OxtrPBN neurons during rehydration (2× speed). Upper panel: video of mouse behavior during water rehydration following 24-h dehydration; lower panel: corresponding calcium fluorescence activity in OxtrPBN neurons demonstrating low activity during dehydration and initial presentation of water, followed by increasing activity during drinking bouts, with decreasing activity between bouts (n = 94 neurons from 3 mice)

  4. Supplementary Video 2

    Calcium fluorescence in OxtrPBN neurons during a prolonged drinking bout (2× speed). Upper panel: video of mouse behavior during drinking bout; lower panel: corresponding calcium fluorescence activity in OxtrPBN neurons demonstrating activity during drinking bout

  5. Supplementary Video 3

    Calcium fluorescence in hM3Dq-injected OxtrPBN neurons following intraperitoneal CNO (10× speed).Calcium fluorescence in OxtrPBN neurons following injection of CNO ip, demonstrating increasing activity over ~15 min, which lasted at least 2 h (n = 83 neurons from 2 mice)