Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA molecular recording with an engineered RNA deaminase

Abstract

RNA deaminases are powerful tools for base editing and RNA molecular recording. However, the enzymes used in currently available RNA molecular recorders such as TRIBE, DART or STAMP have limitations due to RNA structure and sequence dependence. We designed a platform for directed evolution of RNA molecular recorders. We engineered an RNA A-to-I deaminase (an RNA adenosine base editor, rABE) that has high activity, low bias and low background. Using rABE, we present REMORA (RNA-encoded molecular recording in adenosines), wherein deamination by rABE writes a molecular record of RNA–protein interactions. By combining rABE with the C-to-U deaminase APOBEC1 and long-read RNA sequencing, we measured binding by two RNA-binding proteins on single messenger RNAs. Orthogonal RNA molecular recording of mammalian Pumilio proteins PUM1 and PUM2 shows that PUM1 competes with PUM2 for a subset of sites in cells. Furthermore, we identify transcript isoform-specific RNA–protein interactions driven by isoform changes distal to the binding site. The genetically encodable RNA deaminase rABE enables single-molecule identification of RNA–protein interactions with cell type specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Screening for an ssRNA adenosine deaminase.
Fig. 2: Engineering an improved ssRNA adenosine deaminase by directed protein evolution.
Fig. 3: Transcriptome-wide characterization of rABE.
Fig. 4: rABE recovers known binding patterns of Pumilio proteins.
Fig. 5: PacBio long-read sequencing identifies isoform-specific binding events of PUM1.
Fig. 6: Co-occupancy of PUM1 and PUM2 on RNA using rABE and APOBEC1 fusions.

Similar content being viewed by others

Data availability

Plasmids encoding rABE are available through Addgene (191383–191386). Sequencing data are available at GEO accession number GSE216334. Source data are provided with this paper.

Code availability

Analysis code is available at https://github.com/linyz/remora.

References

  1. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    CAS  PubMed  Google Scholar 

  2. Dominguez, D. et al. Sequence, structure, and context preferences of human RNA binding proteins. Mol. Cell 70, 854–867 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Buenrostro, J. D. et al. Quantitative analysis of RNA–protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol. 32, 562–568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    CAS  PubMed  Google Scholar 

  5. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Floor, S. N. & Doudna, J. A. Tunable protein synthesis by transcript isoforms in human cells. Elife 5, 1–25 (2016).

    Google Scholar 

  8. Blair, J. D., Hockemeyer, D., Doudna, J. A., Bateup, H. S. & Floor, S. N. Widespread translational remodeling during human neuronal differentiation. Cell Rep. 21, 2005–2016 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brannan, K. W. et al. Robust single-cell discovery of RNA targets of RNA-binding proteins and ribosomes. Nat. Methods 18, 507–519 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Abruzzi, K. C., Ratner, C. & Rosbash, M. Comparison of TRIBE and STAMP for identifying targets of RNA binding proteins in human and Drosophila cells. RNA 29, 1230–1242 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenberg, B. R., Hamilton, C. E., Mwangi, M. M., Dewell, S. & Papavasiliou, F. N. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat. Struct. Mol. Biol. 18, 230–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldstrohm, A. C., Hall, T. M. T. & McKenney, K. M. Post-transcriptional regulatory functions of mammalian Pumilio proteins. Trends Genet. 34, 972–990 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jarmoskaite, I. et al. A quantitative and predictive model for RNA binding by human Pumilio proteins. Mol. Cell 74, 966–981 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Campbell, Z. T. et al. Cooperativity in RNA–protein interactions: global analysis of RNA binding specificity. Cell Rep. 1, 570–581 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sternburg, E. L., Estep, J. A., Nguyen, D. K., Li, Y. & Karginov, F. V. Antagonistic and cooperative AGO2-PUM interactions in regulating mRNAs. Sci. Rep. 8, 15316 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Rahman, R., Xu, W., Jin, H. & Rosbash, M. Identification of RNA-binding protein targets with HyperTRIBE. Nat. Protoc. 13, 1829–1849 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaudelli, N. M. et al. Programmable base editing of A-T to G-C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas, J. M. & Beal, P. A. How do ADARs bind RNA? New protein–RNA structures illuminate substrate recognition by the RNA editing ADARs. Bioessays 39(4), 10.1002/bies.201600187 (2017).

    PubMed Central  Google Scholar 

  21. Montiel-Gonźalez, M. F., Vallecillo-Viejo, I. C. & Rosenthal, J. J. C. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 44, e157 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    CAS  PubMed  Google Scholar 

  24. Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5(5), eaax5717 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Losey, H. C., Ruthenburg, A. J. & Verdine, G. L. Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat. Struct. Mol. Biol. 13, 153–159 (2006).

    CAS  PubMed  Google Scholar 

  27. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Conboy, J. G. Developmental regulation of RNA processing by Rbfox proteins. Wiley Interdiscip. Rev. RNA https://doi.org/10.1002/wrna.1398 (2017).

  29. Gehman, L. T. et al. The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. Genes Dev. 26, 445–460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, W., Rahman, R. & Rosbash, M. Mechanistic implications of enhanced editing by a HyperTRIBE RNA-binding protein. RNA 24, 173–182 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Flamand, M. N., Ke, K., Tamming, R. & Meyer, K. D. Single-molecule identification of the target RNAs of different RNA binding proteins simultaneously in cells. Genes Dev. 36, 1002–1015 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bailey, T. L. & Machanick, P. Inferring direct DNA binding from ChIP-seq. Nucleic Acids Res. 40, e128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan, D. et al. Diverse functional elements in RNA predicted transcriptome-wide by orthogonal RNA structure probing. Nucleic Acids Res. 49, 11868–11882 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Alam, S., Suzuki, H. & Tsukahara, T. Alternative splicing regulation of APP exon 7 by RBFox proteins. Neurochem. Int. 78, 7–17 (2014).

    CAS  PubMed  Google Scholar 

  37. Wei, C. et al. RBFox2 binds nascent RNA to globally regulate Polycomb complex 2 targeting in mammalian genomes. Mol. Cell 62, 875–889 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, G. & Hall, T. M. T. Alternate modes of cognate RNA recognition by human PUMILIO proteins. Structure 19, 361–367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bohn, J. A. et al. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res. 46, 362–386 (2018).

    CAS  PubMed  Google Scholar 

  40. Yamada, T. et al. Systematic analysis of targets of Pumilio-mediated mRNA decay reveals that PUM1 repression by DNA damage activates translesion synthesis. Cell Rep. 31, 107542 (2020).

    CAS  PubMed  Google Scholar 

  41. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining vol. 19, 785–794 (ACM, 2016).

  42. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020 (2010).

    CAS  PubMed  Google Scholar 

  43. Oikonomopoulos, S. et al. Methodologies for transcript profiling using long-read technologies. Front. Genet. 11, 606 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wolf, J., Gerber, A. P. & Keller, W. tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. 21, 3841–3851 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Torres, A. G. et al. Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Res. 43, 5145–5157 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ichinose, M. et al. U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Commun. Biol. 5, 968 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, W. et al. One-step, highly efficient site-directed mutagenesis by toxic protein selection. Biotechniques 32, 1266–1270 (2002).

    CAS  PubMed  Google Scholar 

  48. Seo, K. W. & Kleiner, R. E. Profiling dynamic RNA–protein interactions using small-molecule-induced RNA editing. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01372-9 (2023).

  49. Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C. & Simon, M. D. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15, 221–225 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-seq. Cell 178, 473–490 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sterne-Weiler, T. et al. Frac-seq reveals isoform-specific recruitment to polyribosomes. Genome Res. 23, 1615–1623 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Spies, N., Burge, C. B. & Bartel, D. P. 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res. 23, 2078–2090 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  55. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, Y., Lun, A. T. L. L. & Smyth, G. K. From reads to genes to pathways: differential expression analysis of RNA-seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 5, 1438 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Obenchain, V. et al. VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30, 2076–2078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin, Y., May, G. E. & McManus, C. J. Mod-seq: a high-throughput method for probing RNA secondary structure. Methods Enzymol. 558, 125–152 (2015).

    CAS  PubMed  Google Scholar 

  61. Talkish, J., May, G., Lin, Y., Woolford, J. L. & McManus, C. J. Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20, 713–720 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Floor laboratory for feedback on this work and their continued support. Computation was supported by the UCSF Wynton high-performance computing infrastructure, PacBio sequencing was supported through instrumentation shared with V. Ramani (Gladstone Institutes), high-throughput short-read sequencing was supported by the UCSF Center for Advanced Technology, and flow cytometry was supported by the Parnassus Flow Cytometry Core at UCSF. This work was supported by the UCSF Program for Breakthrough Biomedical Research, funded in part by the Sandler Foundation (to S.N.F.) and the National Institutes of Health DP2GM132932 and R35GM149255 (to S.N.F.). S.N.F. is a Pew Scholar in the Biomedical Sciences, supported by The Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.L. and S.N.F.; Investigation, Y.L., S.K., B.Q.T., S.N.F. and Y.A.; Writing – Original Draft, Y.L. and S.N.F.; Writing – Review & Editing, Y.L. and S.N.F.; Methodology, Y.L. and S.N.F.; Resources, M.S.O. and K.W.; Formal analysis, Y.L.; Software, Y.L. and A.E.H.; Funding Acquisition, S.N.F.; Supervision, S.N.F.

Corresponding author

Correspondence to Stephen N. Floor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editors: Rita Strack and Lei Tang, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Design of eGFP-UAG-BoxB-mCherry fluorescent reporter.

RNA secondary structure modeling around UAG-BoxB cassette with RNAfold. BoxB forms a stable stem-loop structure, while the UAG stop codon was predicted to be unstructured.

Extended Data Fig. 2 Directed evolution for an improved ssRNA A-to-I editor.

(a) OD600 measurement of E. coli growth curve after transformation of ABE7.10 under different kanamycin concentrations. 0.375 x concentration (18.75 mg/L) was the optimal concentration that allowed growth of ABE.10 expressing cells and inhibited growth of ABE7.10-E59A negative control cells. (b) Scatter plots of flow cytometry measurement of the editing efficiency of ABE7.10 and ABE7.10-C146S. (c) Western blot of ABE variants in Fig. 2d, ABE7.10 had low expression and was not detected. Expression level and fluorescent reporter assay for rABE were independently tested at least three times, with consistent results. (d) Structural model of the S. aureus tadA protein near Thr145 (corresponding to E. coli Ser146). (e) Sanger sequencing measurement of A-to-I editing rates introduced by ABE7.10 and ABE7.10-C146S on an adenosine-rich UAG-BoxB reporter. Several A-to-I editing were observed flanking both sides of BoxB in different sequence contexts.

Source data

Extended Data Fig. 3 Transcriptome-wide characterization of rABE.

(a) Cell proliferation of wt HEK293T cells and doxycycline-inducible rABE-Flag expressing HEK293T cells measured by cell counts. Cells were incubated with 0, 50, or 1000 ng/mL doxycycline for 3 days. Error bars are 95% CI around mean. n = 3 biologically independent samples. (b) Cell proliferation measured by CFSE labeling of HEK293T stable cell lines expressing rABE under 0, 50, 1000 ng/mL doxycycline. Error bars are 95% CI around mean. n = 3 biologically independent samples. (c, d) Scatter plots of significant A-to-I editing events induced by Rbfox2-rABE under 50 ng/mL (C) and 1000 ng/mL (D) after 12, 24 and 48 hours. (e) Scatter plot of Rbfox2-rABE-induced A-to-I editing rate, comparing 24 hours incubation vs 12 hours incubation of 1000 ng/mL doxycycline; 48 hours incubation vs 24 incubation of 1000 ng/mL doxycycline; and 1000 ng/mL vs 50 ng/mL doxycycline after incubation for 48 hours. (f) Western blot of Rbfox2-hyperTRIBE and endogenous Rbfox2 in HEK293T doxycycline-inducible cell lines, 4 biologically independent replicates each. (g) Western blot of Rbfox2-rABE and endogenous Rbfox2 in HEK293T doxycycline-inducible cell lines, 4 biologically independent replicates each. (h) Western blot measurement of rABE, APOBEC1, Rbfox2-rABE, Rbfox2-APOBEC1 expression levels under 1000 ng/mL doxycycline condition, 3 replicates each. All proteins contain a Flag tag at their C terminus and are blotted with anti-Flag-HRP. (i, j) Differential expression analysis comparing transcriptome-wide gene expression level after doxycycline induction (1000 ng/mL vs no doxycycline control) of rABE, hyperTRIBE and APOBEC1 (I) and of Rbfox2-rABE, Rbfox2-hyperTRIBE and Rbfox2-APOBEC1 (J). Expression of rABE or APOBEC1 alone and their Rbfox2 fusions do not change gene expression levels, while hyperTRIBE induced more genes with expression level changes. (k) CentriMo analysis around Rbfox2-APOBEC1 induced C-to-U editing sites. (l) In vitro structure probing icSHAPE scores around editing sites. Rbfox2-hyperTRIBE and hyperTRIBE showed lower SHAPE reactivity around the editing sites, and lower SHAPE reactivity is a signal of increased structure. (m) Distribution of rABE, hyperTRIBE and APOBEC1 background editing sites across transcript regions. (n) Nucleotide composition at −1 or +1 position of editing sites. Y-axes are log2 fold change or expected value (0.25). (o) Distribution of Rbfox2-rABE, Rbfox2-hyperTRIBE and Rbfox2-APOBEC1 editing sites across transcript regions.

Source data

Extended Data Fig. 4 rABE recovers known binding patterns of Pumilio proteins.

(a) Venn diagram comparison of PUM1-rABE targets (this study) and PUM1 targets identified by CLIP-seq (Sternburg et al.37). (b) Venn diagram comparison of PUM1-rABE targets and PUM2-rABE targets. (c) Venn diagram comparison of PUM2-rABE targets (this study) and PUM2 targets identified by CLIP-seq (Sternburg et al.37). (d) De novo motif discovery in PUM1-rABE hits that are also identified by CLIP-seq or not identified by CLIP-seq. Both populations successfully recovered the known PBE motif UGUANA. (e) PUM1 target genes identified by CLIP-seq but not PUM1-rABE showed significantly lower expression level (p < 2.2e-16, t-test, two-sided, n = 3322 for CLIP only group, n = 879 for CLIP and PUM1-rABE group). Centre: median; box bounds: 25% and 75% percentile; whisker: 1.5x of interquartile range. All outliers are marked as dots. (f) Western blot of PUM1-rABE and endogenous PUM1 in HEK293T dox inducible cell lines, 4 independent biological replicates each. (g) Western blot of PUM2-rABE and endogenous PUM2 in HEK293T dox inducible cell lines, 4 independent biological replicates each. (h) Scatter plot showing editing rate in PUM1-rABE cell lines, under 50 or 1000 ng/mL doxycycline conditions.

Source data

Extended Data Fig. 5

PUM1-APOBEC1 and PUM2-APOBEC1 induced editing patterns in the 3′ UTR region of UBB and PCNA 3′ UTR regions.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Supplementary Tables 1–4.

Reporting Summary

Peer Review File

Supplementary Table 5

Summary of isoform-specific PUM1 binding events.

Source data

Source Data Fig. 1

Statistical source data table for Fig. 1 c,d,e,g.

Source Data Fig. 2

Statistical source Data table for Fig. 2c,d.

Source Data Fig. 3

Statistical source data table for Fig. 3f,g,h,m,n.

Source Data Fig. 4

Statistical source data table for Fig. 4g,h.

Source Data Fig. 5

Statistical source data table for Fig. 5b,c,f,k,l,m.

Source Data Fig. 6

Statistical source data table for Fig. 6d,e,g,h.

Source Data Extended Data Fig./Table 2

Source data table for Extended Data Fig. 2a.

Source Data Extended Data Fig./Table 3

Source data table for Extended Data Fig. 3a,b,i.

Source Data Extended Data Fig./Table 4

Source statistical data table for Extended Data Fig. 4e.

41592_2023_2046_MOESM14_ESM.pdf

Source Data Extended Data Fig./Table 2. Unprocessed western blots for Extended Data Fig. 2c. Source Data Extended Data Fig./Table 3. Unprocessed western blots for Extended Data Fig. 3f,g. Source Data Extended Data Fig./Table 4. Unprocessed western blots for Extended Data Fig. 4f,g.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Kwok, S., Hein, A.E. et al. RNA molecular recording with an engineered RNA deaminase. Nat Methods 20, 1887–1899 (2023). https://doi.org/10.1038/s41592-023-02046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-02046-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research