Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The NCI-MATCH trial: lessons for precision oncology

Abstract

The NCI-MATCH (Molecular Analysis for Therapy Choice) trial (NCT02465060) was launched in 2015 as a genomically driven, signal-seeking precision medicine platform trial—largely for patients with treatment-refractory, malignant solid tumors. Having completed in 2023, it remains one of the largest tumor-agnostic, precision oncology trials undertaken to date. Nearly 6,000 patients underwent screening and molecular testing, with a total of 1,593 patients (inclusive of continued accrual from standard next-generation sequencing) being assigned to one of 38 substudies. Each substudy was a phase 2 trial of a therapy matched to a genomic alteration, with a primary endpoint of objective tumor response by RECIST criteria. In this Perspective, we summarize the outcomes of the initial 27 substudies in NCI-MATCH, which met its signal-seeking objective with 7/27 positive substudies (25.9%). We discuss key aspects of the design and operational conduct of the trial, highlighting important lessons for future precision medicine studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NCI-MATCH platform trial design.

Similar content being viewed by others

References

  1. Jabbour, E. & Kantarjian, H. Chronic myelogenous leukemia: 2020 update on diagnosis, therapy and monitoring. Am. J. Hematol. 95, 691–709 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Waarts, M. R., Stonestrom, A. J., Park, Y. C. & Levine, R. L. Targeting mutations in cancer. J. Clin. Invest. 132, e154943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kopetz, S. et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J. Clin. Oncol. 33, 4032–4038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wheeler, D. A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Flaherty, K. T. et al. NCI-MATCH Team. The Molecular Analysis for Therapy Choice (NCI-MATCH) trial: lessons for genomic trial design. J. Natl. Cancer Inst. 112, 1021–1029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Flaherty, K. T. et al. NCI-MATCH team. Molecular landscape and actionable alterations in a genomically guided gancer clinical trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH). J. Clin. Oncol. 38, 3883–3894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rehm, H. L. et al. Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Commitee ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 15, 733–747 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xuan, J., Yu, Y., Qing, T., Guo, L. & Shi, L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 340, 284–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Lih, C. J. et al. Analytical validation of the next-generation sequencing assay for a nationwide signal-finding clinical trial: Molecular Analysis for Therapy Choice Clinical Trial. J. Mol. Diagn. 19, 313–327 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khoury, J. D. et al. Validation of immunohistochemical assays for integral biomarkers in the NCI-MATCH EAY131 clinical trial. Clin. Cancer Res. 24, 521–531 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Le Tourneau, C. et al. SHIVA investigators. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 16, 1324–1334 (2015).

    Article  PubMed  Google Scholar 

  13. Massard, C. et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 7, 586–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Hyman, D. M. et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554, 189–194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmoll, H. J. et al. MODUL-a multicenter randomized clinical trial of biomarker-driven maintenance therapy following first-line standard induction treatment of metastatic colorectal cancer: an adaptable signal-seeking approach. J. Cancer Res. Clin. Oncol. 144, 1197–1204 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, J. et al. Tumor genomic profiling guides patients with metastatic gastric cancer to targeted treatment: The VIKTORY Umbrella Trial. Cancer Discov. 9, 1388–1405 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Salama, A. K. S. et al. Dabrafenib and trametinib in patients With tumors with BRAF V600E mutations: results of the NCI-MATCH trial subprotocol H. J. Clin. Oncol. 38, 3895–3904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Azad, N. S. et al. Nivolumab is effective in mismatch repair-deficient noncolorectal cancers: results from arm Z1D-A subprotocol of the NCI-MATCH (EAY131) Study. J. Clin. Oncol. 38, 214–222 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Kalinsky, K. M. et al. Effect of capivasertib in patients with an AKT1 E17K-mutated tumor: NCI-MATCH subprotocol EAY131-Y nonrandomized trial. JAMA Oncol. 7, 271–278 (2020).

  20. Kalinsky K. M. et al. Ipatasertib in patients with tumors with AKT mutations: results from the NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocol Z1K. Presented at: 34th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Barcelona, Spain; Abstract 11 (2021).

  21. Damodaran, S. et al. Phase II study of copanlisib in patients with tumors with PIK3CA mutations: results from the NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocol Z1F. J. Clin. Oncol. 40, 1552–1561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tuveson, D. A. et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20, 5054–5058 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. National Cancer Institute. NCI Dictionary of Cancer Terms. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/rare-cancer/

  24. Parsons, D. W. et al. NCI-COG Pediatric MATCH Team. Actionable tumor alterations and treatment protocol enrollment of pediatric and young adult patients with refractory cancers in the National Cancer Institute-Children’s Oncology Group Pediatric MATCH Trial. J. Clin. Oncol. 40, 2224–2234 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Y. & Chi, P. Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers. J. Hematol. Oncol. 11, 78 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gatta, G., RARECAREnet working group. et al. Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet—a population-based study. Lancet Oncol. 18, 1022–1039 (2017).

    Article  PubMed  Google Scholar 

  27. Hoes, L. R. et al. Patients with rare cancers in the Drug Rediscovery Protocol (DRUP) benefit from genomics-guided treatment. Clin. Cancer Res. 28, 1402–1411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wheeler, D. A. et al. Molecular features of cancers exhibiting exceptional responses to treatment. Cancer Cell. 39, 38–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Adashek J. J. et al. Tissue agnostic activity of BRAF plus MEK inhibitor in BRAF V600 mutant tumors. Mol. Cancer Ther. https://doi.org/10.1158/1535-7163 (2022).

  31. Howlader, N. et al. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 383, 640–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kahlon, N. et al. Melanoma treatments and mortality rate trends in the US, 1975 to 2019. JAMA Netw. Open. 5, e2245269 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Meric-Bernstam F, et al. National Cancer Institute Combination Therapy Platform Trial with Molecular Analysis for Therapy Choice (ComboMATCH). Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-22-3334 (2023).

  35. Dentro, S. C. et al. PCAWG Evolution and Heterogeneity Working Group and the PCAWG Consortium. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hahn, W. C. et al. Cancer Target Discovery and Development Network. An expanded universe of cancer targets. Cell 184, 1142–1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choueiri, T. K. et al.; CheckMate 9ER Investigators. Nivolumab plus cabozantinib versus sunitinib for advanced renal cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tiacci, E. et al. Vemurafenib plus rituximab in refractory or relapsed hairy-cell leukemia. N. Engl. J. Med. 384, 1810–1823 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Mandelker, D. & Zhang, L. The emerging significance of secondary germline testing in cancer genomics. J. Pathol. 244, 610–615 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Reckamp, K. L. et al. Phase II trial of afatinib in patients with EGFR-mutated solid tumors excluding lung cancer: Results from the NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocol A. Presented at: 34th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Barcelona, Spain; Abstract 235 (2022).

  41. Bedard, P. L. et al. Phase II study of Afatinib in patients with tumors with HER2-activating mutations: results from the NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocol EAY131-B. JCO Precis. Oncol. 6, e2200165 (2022).

    Article  PubMed  Google Scholar 

  42. Mansfield, A. S. et al. Crizotinib in patients with tumors harboring ALK or ROS1 rearrangements: results from the NCI-MATCH trial (EAY131) subprotocols F and G. NPJ Precis. Oncol. 6, 13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krop, I. E. et al. Phase II study of taselisib in PIK3CA-mutated solid tumors other than breast and squamous lung cancer: results from the NCI-MATCH ECOG-ACRIN rial (EAY131) subprotocol I. JCO Precis. Oncol. 6, e2100424 (2022). PMC8865530.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Connolly, R. M. et al. Activity of trastuzumab and pertuzumab in patients with non-breast/gastroesophageal HER2 amplified tumors: results of the NCI-MATCH trial (EAY131) subprotocol. J. Ann. Oncol. 31, S479–S480 (2020).

    Article  Google Scholar 

  45. Mita, A. C. et al. Erdafitinib in patients with tumors harboring FGFR gene mutations or fusions: results from the NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocol K2. Mol. Cancer Ther. 20, Abstract LBA003 (2020).

  46. Hays, J. L. et al. Results from the NCI-MATCH ECOG-ACRIN Trial (EAY131)—phase 2 study of MLN0128 (TAK-228) in patients with tumors with TSC1 or TSC2 mutations: subprotocol EAY131-M. Presented at: 34th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics; Barcelona, Spain; Abstract 73 (2022)

  47. Janku, F. et al. Phase II study of PI3K-beta inhibitor GSK2636771 in patients (pts) with cancers (ca) with PTEN mutation/deletion (mut/del) or PTEN protein loss. Ann Oncol. 29, Abstract 418PD (2018).

  48. Jhaveri, K. et al. Ado-trastuzumab emtansine (T-DM1) in patients with HER2 amplified tumors excluding breast and gastric/gastro-esophageal junction (GEJ) adenocarcinomas: results from the NCI-MATCH Trial (EAY131) sub-protocol Q. Ann. Oncol. 30, 1821–1830 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnson, D. B. et al. Trametinib activity in patients with solid tumors and lymphomas harboring BRAF non-V600 mutations or fusions: results from NCI-MATCH (EAY131). Clin. Cancer Res. 26, 1812–1819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wisinski, K. B. et al. Trametinib in patients with NF1-, GNAQ- or GNA11-mutant tumors: results from the NCI-MATCH ECOG-ACRIN Trial (EAY131) subprotocols S1 and S2. Ann. Oncol. 7, e2200421 (2023).

  51. Tsao, A. S. et al. Phase II study of vismodegib in patients with SMO- or PTCH1-mutated tumors: results from NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocol T. J. Clin. Oncol. 40, Abstract 3010 (2022).

  52. Jackman, D. M. et al. A phase 2 study of defactinib (VS-6063) in patients with NF2 altered tumors: results from NCI-MATCH (EAY131) subprotocol U. J. Clin. Oncol. 39, Abstract 3087 (2021).

  53. Gien, L. T. et al. Phase II study of Sunitinib in tumors with c-KIT mutations: results from the NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocol V. Presented at: 34th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics; Barcelona, Spain; Abstract 238 (2022).

  54. Chae, Y. et al. Phase II study of AZD4547 in patients with tumors harboring aberrations in the FGFR pathway: results from the NCI-MATCH trial (EAY131) subprotocol W. J. Clin. Oncol. 38, 2407–2417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cleary, J. M. et al. Differential outcomes in codon 12/13 and codon 61 NRAS-mutated cancers in the phase 2 NCI-MATCH trial of binimetinib in patients with NRAS-mutated tumors. Clin. Cancer Res. 27, 2996–3004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clark, A. S. et al. Molecular analysis for therapy choice (NCI-MATCH, EAY131) arm Z1B: phase II trial of palbociclib for CCND1, 2 or 3 amplified tumors. Cancer Res. 79, Abstract LB-010 (2020).

  57. Janku, F. et al. Phase II study of PI3K inhibitor copanlisib in patients with cancers with deleterious PTEN sequencing results and retained PTEN protein expression: results from the NCI-MATCH Trial (EAY131) subprotocol Z1H. Ann. Oncol. 32, S595–S596 (2021).

    Article  Google Scholar 

  58. Subbiah, V. et al. BVD-523FB (Ulixertinib) in patients with tumors with BRAF fusions, or with non-V600E, non-V600K BRAF mutations: results from the NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocol EAY131-Z1L. Proc. Am. Assoc. Cancer Res. 82, Abstract CT160 (2022).

  59. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; assisted in drafting the article and/or revising it critically for important intellectual content; and approved the final version to be published.

Corresponding author

Correspondence to Peter J. O’Dwyer.

Ethics declarations

Competing interests

P.J.O.’D. received research support from Pfizer, Genentech, BMS, AstraZeneca, GSK, Five Prime, FortySeven, Merck, Syndax, BBI, Novartis, Celgene, Incyte, Lilly/Imclone, array, h3biomedicine, Taiho, Minneamrata, pharmacyclics/abbvie and Mirati; and provided expert testimony for Dai-ichi Sankyo. K.T.F. has served on the board of directors of Loxo Oncology, Clovis Oncology, Strata Oncology, Checkmate Pharmaceuticals, Kinnate Pharmaceuticals and Scorpion Therapeutics; on the scientific advisory boards of PIC Therapeutics, Apricity, Oncoceutics, Fog Pharma, Tvardi, xCures, Monopteros, Vibliome, ALX Oncology, OMRx, Soley Therapeutics and Quanta Therapeutics; as a consultant to Lilly, Novartis, Genentech and Takeda; and received research funding from Novartis and Sanofi. A.J.I. holds stock options in, and has served on the scientific advisory boards of, PAIGE.AI, Kinnate Biopharma, Repare Therapeutics and SequreDx, and has received research support from Invitae. C.A. serves or has served as a scientific advisor to Novartis, Lilly, Merck, AstraZeneca, Daiichi Sankyo, Sanofi, TAIHO Oncology, PUMA Biotechnology, OrigiMed, Arvinas and the Komen Foundation; received grant support from Pfizer, Lilly and Takeda; and holds minor stock options in Provista Diagnostics. The remaining authors report no competing interests.

Peer review

Peer review information

Nature Medicine thanks Shumei Kato, Birgit Geoerger and Maud Kamal for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Dwyer, P.J., Gray, R.J., Flaherty, K.T. et al. The NCI-MATCH trial: lessons for precision oncology. Nat Med 29, 1349–1357 (2023). https://doi.org/10.1038/s41591-023-02379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-023-02379-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer