Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New and emerging approaches to treat psychiatric disorders

Abstract

Psychiatric disorders are highly prevalent, often devastating diseases that negatively impact the lives of millions of people worldwide. Although their etiological and diagnostic heterogeneity has long challenged drug discovery, an emerging circuit-based understanding of psychiatric illness is offering an important alternative to the current reliance on trial and error, both in the development and in the clinical application of treatments. Here we review new and emerging treatment approaches, with a particular emphasis on the revolutionary potential of brain-circuit-based interventions for precision psychiatry. Limitations of circuit models, challenges of bringing precision therapeutics to market and the crucial advances needed to overcome these obstacles are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain targets for selective pharmacotherapeutics.
Fig. 2: Brain-stimulation techniques and mechanism of action.
Fig. 3: Inflammation as a therapeutic target in psychiatric disease.

Similar content being viewed by others

References

  1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–150 (2022).

    Article  PubMed Central  Google Scholar 

  2. Erskine, H. E. et al. A heavy burden on young minds: the global burden of mental and substance use disorders in children and youth. Psychol. Med. 45, 1551–1563 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Patel, V. et al. The Lancet Commission on global mental health and sustainable development. Lancet 392, 1553–1598 (2018).

    Article  PubMed  Google Scholar 

  4. Whiteford, H. A. et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382, 1575–1586 (2013).

    Article  PubMed  Google Scholar 

  5. Leichsenring, F., Steinert, C., Rabung, S. & Ioannidis, J. P. A. The efficacy of psychotherapies and pharmacotherapies for mental disorders in adults: an umbrella review and meta-analytic evaluation of recent meta-analyses. World Psychiatry 21, 133–145 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Howes, O. D., Thase, M. E. & Pillinger, T. Treatment resistance in psychiatry: state of the art and new directions. Mol. Psychiatry 27, 58–72 (2022).

    Article  PubMed  Google Scholar 

  7. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  10. Ross, C. A. & Margolis, R. L. Research domain criteria: strengths, weaknesses, and potential alternatives for future psychiatric research. Mol. Neuropsychiatry 5, 218–236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alonso, P. et al. Deep brain stimulation for obsessive–compulsive disorder: a meta-analysis of treatment outcome and predictors of response. PLoS ONE 10, e0133591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Holtzheimer, P. E. et al. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch. Gen. Psychiatry 69, 150–158 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Malone, D. A. et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry 65, 267–275 (2009).

    Article  PubMed  Google Scholar 

  16. Dougherty, D. D. et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol. Psychiatry 78, 240–248 (2015).

    Article  PubMed  Google Scholar 

  17. Holtzheimer, P. E. et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry 4, 839–849 (2017).

    Article  PubMed  Google Scholar 

  18. Baldermann, J. C. et al. Connectomic deep brain stimulation for obsessive–compulsive disorder. Biol. Psychiatry 90, 678–688 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Riva-Posse, P. et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 76, 963–969 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Riva-Posse, P. et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiatry 23, 843–849 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Li, N. et al. A unified connectomic target for deep brain stimulation in obsessive–compulsive disorder. Nat. Commun. 11, 3364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  23. Borchers, S., Himmelbach, M., Logothetis, N. & Karnath, H.-O. Direct electrical stimulation of human cortex—the gold standard for mapping brain functions? Nat. Rev. Neurosci. 13, 63–70 (2011).

    Article  PubMed  Google Scholar 

  24. Lim, L. W. et al. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transl. Psychiatry 5, e535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, L. W., Janssen, M. L. F., Kocabicak, E. & Temel, Y. The antidepressant effects of ventromedial prefrontal cortex stimulation is associated with neural activation in the medial part of the subthalamic nucleus. Behav. Brain Res. 279, 17–21 (2015).

    Article  PubMed  Google Scholar 

  26. Srejic, L. R., Hamani, C. & Hutchison, W. D. High-frequency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe. Eur. J. Neurosci. 41, 1219–1226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Luyck, K. et al. Electrical stimulation of the bed nucleus of the stria terminalis reduces anxiety in a rat model. Transl. Psychiatry 7, e1033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parvizi, J. et al. Complex negative emotions induced by electrical stimulation of the human hypothalamus. Brain Stimul. 15, 615–623 (2022).

    Article  PubMed  Google Scholar 

  29. Caruana, F. et al. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain 141, 3035–3051 (2018).

    Article  PubMed  Google Scholar 

  30. Inman, C. S. et al. Human amygdala stimulation effects on emotion physiology and emotional experience. Neuropsychologia 145, 106722 (2020).

    Article  PubMed  Google Scholar 

  31. Choi, K. S., Riva-Posse, P., Gross, R. E. & Mayberg, H. S. Mapping the ‘depression switch’ during intraoperative testing of subcallosal cingulate deep brain stimulation. JAMA Neurol. 72, 1252–1260 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Riva-Posse, P. et al. Autonomic arousal elicited by subcallosal cingulate stimulation is explained by white matter connectivity. Brain Stimul. 12, 743–751 (2019).

    Article  PubMed  Google Scholar 

  33. Haq, I. U. et al. Smile and laughter induction and intraoperative predictors of response to deep brain stimulation for obsessive–compulsive disorder. Neuroimage 54, S247–S255 (2011).

    Article  PubMed  Google Scholar 

  34. Scangos, K. W., Makhoul, G. S., Sugrue, L. P., Chang, E. F. & Krystal, A. D. State-dependent responses to intracranial brain stimulation in a patient with depression. Nat. Med. 27, 229–231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guillory, S. A. & Bujarski, K. A. Exploring emotions using invasive methods: review of 60 years of human intracranial electrophysiology. Soc. Cogn. Affect. Neurosci. 9, 1880–1889 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rao, V. R. et al. Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr. Biol. 28, 3893–3902 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Sheth, S. A. et al. Deep brain stimulation for depression informed by intracranial recordings. Biol. Psychiatry 92, 246–251 (2022).

    Article  PubMed  Google Scholar 

  38. Quinn, E. J. et al. Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Mov. Disord. 30, 1750–1758 (2015).

    Article  PubMed  Google Scholar 

  39. Nguyen, G. & Postnova, S. Progress in modelling of brain dynamics during anaesthesia and the role of sleep–wake circuitry. Biochem. Pharmacol. 191, 114388 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Waltz, E. Green light for deep brain stimulator incorporating neurofeedback. Nat. Biotechnol. 38, 1014–1015 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hyde, J. et al. Efficacy of neurostimulation across mental disorders: systematic review and meta-analysis of 208 randomized controlled trials. Mol. Psychiatry 27, 2709–2719 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rossi, S. et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 132, 269–306 (2021).

    Article  PubMed  Google Scholar 

  46. Klooster, D. C. W., Ferguson, M. A., Boon, P. A. J. M. & Baeken, C. Personalizing repetitive transcranial magnetic stimulation parameters for depression treatment using multimodal neuroimaging. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 536–545 (2022).

    PubMed  Google Scholar 

  47. Deng, Z.-D., Lisanby, S. H. & Peterchev, A. V. Coil design considerations for deep transcranial magnetic stimulation. Clin. Neurophysiol. 125, 1202–1212 (2014).

    Article  PubMed  Google Scholar 

  48. Philip, N. S., Barredo, J., Aiken, E. & Carpenter, L. L. Neuroimaging mechanisms of therapeutic transcranial magnetic stimulation for major depressive disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 211–222 (2018).

    PubMed  Google Scholar 

  49. Blumberger, D. M. et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet 391, 1683–1692 (2018).

    Article  PubMed  Google Scholar 

  50. Weigand, A. et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry 84, 28–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Cole, E. J. et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiatry 177, 716–726 (2020).

    Article  PubMed  Google Scholar 

  52. Leuchter, A. F. et al. Efficacy and safety of low-field synchronized transcranial magnetic stimulation (sTMS) for treatment of major depression. Brain Stimul. 8, 787–794 (2015).

    Article  PubMed  Google Scholar 

  53. Koponen, L. M., Nieminen, J. O. & Ilmoniemi, R. J. Multi-locus transcranial magnetic stimulation—theory and implementation. Brain Stimul. 11, 849–855 (2018).

    Article  PubMed  Google Scholar 

  54. Lisanby, S. H. Electroconvulsive therapy for depression. N. Engl. J. Med. 357, 1939–1945 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Husain, M. M. et al. Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): a Consortium for Research in ECT (CORE) report. J. Clin. Psychiatry 65, 485–491 (2004).

    Article  PubMed  Google Scholar 

  56. Arulpragasam, A. R. et al. Low intensity focused ultrasound for non-invasive and reversible deep brain neuromodulation—a paradigm shift in psychiatric research. Front. Psychiatry 13, 825802 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sanguinetti, J. L. et al. Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front. Hum. Neurosci. 14, 52 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Martin, A. R., Daly, M. J., Robinson, E. B., Hyman, S. E. & Neale, B. M. Predicting polygenic risk of psychiatric disorders. Biol. Psychiatry 86, 97–109 (2019).

    Article  PubMed  Google Scholar 

  59. Poldrack, R. A. et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115–126 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Müller, V. I. et al. Altered brain activity in unipolar depression revisited: meta-analyses of neuroimaging studies. JAMA Psychiatry 74, 47–55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sprooten, E. et al. Addressing reverse inference in psychiatric neuroimaging: meta-analyses of task-related brain activation in common mental disorders. Hum. Brain Mapp. 38, 1846–1864 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goldstein-Piekarski, A. N. et al. Mapping neural circuit biotypes to symptoms and behavioral dimensions of depression and anxiety. Biol. Psychiatry 91, 561–571 (2022).

    Article  PubMed  Google Scholar 

  65. Gray, J. P., Müller, V. I., Eickhoff, S. B. & Fox, P. T. Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies. Am. J. Psychiatry 177, 422–434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fox, P. T., Lancaster, J. L., Laird, A. R. & Eickhoff, S. B. Meta-analysis in human neuroimaging: computational modeling of large-scale databases. Annu. Rev. Neurosci. 37, 409–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. FDA–NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource (Food and Drug Administration (US), 2016).

  68. Webb, C. A. et al. Personalized prediction of antidepressant v. placebo response: evidence from the EMBARC study. Psychol. Med. 49, 1118–1127 (2019).

    Article  PubMed  Google Scholar 

  69. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Grosenick, L. et al. Functional and optogenetic approaches to discovering stable subtype-specific circuit mechanisms in depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 554–566 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Scangos, K. W. et al. Distributed subnetworks of depression defined by direct intracranial neurophysiology. Front. Hum. Neurosci. 15, 746499 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Williams, L. M. et al. Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology 40, 2398–2408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goldstein-Piekarski, A. N. et al. Intrinsic functional connectivity predicts remission on antidepressants: a randomized controlled trial to identify clinically applicable imaging biomarkers. Transl. Psychiatry 8, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dunlop, B. W. et al. Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am. J. Psychiatry 174, 533–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dichter, G. S., Damiano, C. A. & Allen, J. A. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J. Neurodev. Disord. 4, 19 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Treadway, M. T. & Zald, D. H. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537–555 (2011).

    Article  PubMed  Google Scholar 

  77. Ang, Y.-S. et al. Pretreatment reward sensitivity and frontostriatal resting-state functional connectivity are associated with response to bupropion after sertraline nonresponse. Biol. Psychiatry 88, 657–667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nguyen, K. P. et al. Patterns of pretreatment reward task brain activation predict individual antidepressant response: key results from the EMBARC randomized clinical trial. Biol. Psychiatry 91, 550–560 (2022).

    Article  PubMed  Google Scholar 

  79. Fawcett, J. et al. Clinical experience with high-dosage pramipexole in patients with treatment-resistant depressive episodes in unipolar and bipolar depression. Am. J. Psychiatry 173, 107–111 (2016).

    Article  PubMed  Google Scholar 

  80. Ventorp, F. Preliminary evidence of efficacy and target engagement of pramipexole in anhedonic depression. Psychiatr. Res. Clin. Pract. 4, 42–47 (2022).

  81. Bruijnzeel, A. W. κ-opioid receptor signaling and brain reward function. Brain Res. Rev. 62, 127–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krystal, A. D. et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat. Med. 26, 760–768 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Costi, S. et al. Impact of the KCNQ2/3 channel opener ezogabine on reward circuit activity and clinical symptoms in depression: results from a randomized controlled trial. Am. J. Psychiatry 178, 437–446 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Costi, S., Han, M.-H. & Murrough, J. W. The potential of KCNQ potassium channel openers as novel antidepressants. CNS Drugs 36, 207–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Williams, L. M. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3, 472–480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Korgaonkar, M. S., Grieve, S. M., Etkin, A., Koslow, S. H. & Williams, L. M. Using standardized fMRI protocols to identify patterns of prefrontal circuit dysregulation that are common and specific to cognitive and emotional tasks in major depressive disorder: first wave results from the iSPOT-D study. Neuropsychopharmacology 38, 863–871 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ruhé, H. G., Booij, J., Veltman, D. J., Michel, M. C. & Schene, A. H. Successful pharmacologic treatment of major depressive disorder attenuates amygdala activation to negative facial expressions: a functional magnetic resonance imaging study. J. Clin. Psychiatry 73, 451–459 (2012).

    Article  PubMed  Google Scholar 

  88. Godlewska, B. R., Browning, M., Norbury, R., Cowen, P. J. & Harmer, C. J. Early changes in emotional processing as a marker of clinical response to SSRI treatment in depression. Transl. Psychiatry 6, e957 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Minard, A. et al. Remarkable progress with small-molecule modulation of TRPC1/4/5 channels: implications for understanding the channels in health and disease. Cells 7, 52 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Grimm, S. et al. The effects of transient receptor potential cation channel inhibition by BI 1358894 on cortico–limbic brain reactivity to negative emotional stimuli in major depressive disorder. Eur. Neuropsychopharmacol. 65, 44–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Recourt, K. et al. The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl. Psychiatry 9, 216 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Soya, S. & Sakurai, T. Orexin as a modulator of fear-related behavior: hypothalamic control of noradrenaline circuit. Brain Res. 1731, 146037 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, X. et al. Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder. Hum. Brain Mapp. 42, 5458–5476 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bandelow, B. et al. Biological markers for anxiety disorders, OCD and PTSD: a consensus statement. Part II: neurochemistry, neurophysiology and neurocognition. World J. Biol. Psychiatry 18, 162–214 (2017).

    Article  PubMed  Google Scholar 

  95. Fleischhacker, W. W. et al. Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: a double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry 8, 191–201 (2021).

    Article  PubMed  Google Scholar 

  96. Dichter, G. S., Gibbs, D. & Smoski, M. J. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J. Affect. Disord. 172, 8–17 (2015).

    Article  PubMed  Google Scholar 

  97. Posner, J. et al. Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry 70, 373–382 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Andreescu, C. et al. Resting state functional connectivity and treatment response in late-life depression. Psychiatry Res. 214, 313–321 (2013).

    Article  PubMed  Google Scholar 

  99. Kilpatrick, L. A., Krause-Sorio, B., Siddarth, P., Narr, K. L. & Lavretsky, H. Default mode network connectivity and treatment response in geriatric depression. Brain Behav. 12, e2475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liston, C. et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol. Psychiatry 76, 517–526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Deligiannidis, K. M. et al. Effect of zuranolone vs placebo in postpartum depression: a randomized clinical trial. JAMA Psychiatry 78, 951–959 (2021).

    Article  PubMed  Google Scholar 

  102. Deligiannidis, K. M. et al. Resting-state functional connectivity, cortical GABA, and neuroactive steroids in peripartum and peripartum depressed women: a functional magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology 44, 546–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Henter, I. D., Park, L. T. & Zarate, C. A. Novel glutamatergic modulators for the treatment of mood disorders: current status. CNS Drugs 35, 527–543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zarate, C. A. et al. A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. McIntyre, R. S. et al. The effect of intravenous, intranasal, and oral ketamine in mood disorders: a meta-analysis. J. Affect. Disord. 276, 576–584 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Wilkinson, S. T. et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am. J. Psychiatry 175, 150–158 (2018).

    Article  PubMed  Google Scholar 

  107. Abdallah, C. G. et al. Dose-related effects of ketamine for antidepressant-resistant symptoms of posttraumatic stress disorder in veterans and active duty military: a double-blind, randomized, placebo-controlled multi-center clinical trial. Neuropsychopharmacology 47, 1574–1581 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Feder, A. et al. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 71, 681–688 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Rodriguez, C. I. et al. Randomized controlled crossover trial of ketamine in obsessive–compulsive disorder: proof-of-concept. Neuropsychopharmacology 38, 2475–2483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, Q., Wang, S. & Mei, X. A single intravenous administration of a sub-anesthetic ketamine dose during the perioperative period of cesarean section for preventing postpartum depression: a meta-analysis. Psychiatry Res. 310, 114396 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Popova, V. et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am. J. Psychiatry 176, 428–438 (2019).

    Article  PubMed  Google Scholar 

  112. Daly, E. J. et al. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry 76, 893–903 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ionescu, D. F. et al. Esketamine nasal spray for rapid reduction of depressive symptoms in patients with major depressive disorder who have active suicide ideation with intent: results of a phase 3, double-blind, randomized study (ASPIRE II). Int. J. Neuropsychopharmacol. 24, 22–31 (2021).

    Article  PubMed  Google Scholar 

  114. Kim, J., Farchione, T., Potter, A., Chen, Q. & Temple, R. Esketamine for treatment-resistant depression—first FDA-approved antidepressant in a new class. N. Engl. J. Med. 381, 1–4 (2019).

    Article  PubMed  Google Scholar 

  115. Zanos, P. et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533, 481–486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zarate, C. A. et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am. J. Psychiatry 163, 153–155 (2006).

    Article  PubMed  Google Scholar 

  117. Alario, A. A. & Niciu, M. J. Biomarkers of ketamine’s antidepressant effect: a clinical review of genetics, functional connectivity, and neurophysiology. Chronic Stress 5, 24705470211014210 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ionescu, D. F. et al. Ketamine-associated brain changes: a review of the neuroimaging literature. Harv. Rev. Psychiatry 26, 320–339 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Morris, L. S. et al. Ketamine normalizes subgenual cingulate cortex hyper-activity in depression. Neuropsychopharmacology 45, 975–981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tabuteau, H., Jones, A., Anderson, A., Jacobson, M. & Iosifescu, D. V. Effect of AXS-05 (dextromethorphan–bupropion) in major depressive disorder: a randomized double-blind controlled trial. Am. J. Psychiatry 179, 490–499 (2022).

    Article  PubMed  Google Scholar 

  121. Nagele, P. et al. A phase 2 trial of inhaled nitrous oxide for treatment-resistant major depression. Sci. Transl. Med. 13, eabe1376 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Edinoff, A. N. et al. Brexanolone, a GABAA modulator, in the treatment of postpartum depression in adults: a comprehensive review. Front. Psychiatry 12, 699740 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Dacarett-Galeano, D. J. & Diao, X. Y. Brexanolone: a novel therapeutic in the treatment of postpartum depression. Am. J. Psychiatry Resid. J. 15, 2–4 (2019).

    Article  Google Scholar 

  124. Burgdorf, J. S., Zhang, X.-L., Stanton, P. K., Moskal, J. R. & Donello, J. E. Zelquistinel is an orally bioavailable novel NMDA receptor allosteric modulator that exhibits rapid and sustained antidepressant-like effects. Int. J. Neuropsychopharmacol. 25, 979–991 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Galvão-Coelho, N. L. et al. Classic serotonergic psychedelics for mood and depressive symptoms: a meta-analysis of mood disorder patients and healthy participants. Psychopharmacology 238, 341–354 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Carhart-Harris, R. et al. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384, 1402–1411 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Ling, S. et al. Molecular mechanisms of psilocybin and implications for the treatment of depression. CNS Drugs 36, 17–30 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Ly, C. et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shao, L.-X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109, 2535–2544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Girn, M. et al. Serotonergic psychedelic drugs LSD and psilocybin reduce the hierarchical differentiation of unimodal and transmodal cortex. Neuroimage 256, 119220 (2022).

    Article  PubMed  Google Scholar 

  131. Daws, R. E. et al. Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 28, 844–851 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Carhart-Harris, R. L. et al. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci. Rep. 7, 13187 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Johnson, M. W., Hendricks, P. S., Barrett, F. S. & Griffiths, R. R. Classic psychedelics: an integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharmacol. Ther. 197, 83–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Roseman, L., Nutt, D. J. & Carhart-Harris, R. L. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front. Pharmacol. 8, 974 (2017).

    Article  PubMed  Google Scholar 

  135. Pasquini, L., Palhano-Fontes, F. & Araujo, D. B. Subacute effects of the psychedelic ayahuasca on the salience and default mode networks. J. Psychopharmacol. 34, 623–635 (2020).

    Article  PubMed  Google Scholar 

  136. Müller, F., Brändle, R., Liechti, M. E. & Borgwardt, S. Neuroimaging of chronic MDMA (‘ecstasy’) effects: a meta-analysis. Neurosci. Biobehav. Rev. 96, 10–20 (2019).

    Article  PubMed  Google Scholar 

  137. Sanacora, G. & Schatzberg, A. F. Ketamine: promising path or false prophecy in the development of novel therapeutics for mood disorders? Neuropsychopharmacology 40, 259–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Nutt, D. & Carhart-Harris, R. The current status of psychedelics in psychiatry. JAMA Psychiatry 78, 121–122 (2021).

    Article  PubMed  Google Scholar 

  139. Vargas, M. V., Meyer, R., Avanes, A. A., Rus, M. & Olson, D. E. Psychedelics and other psychoplastogens for treating mental illness. Front. Psychiatry 12, 727117 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Drevets, W. C., Wittenberg, G. M., Bullmore, E. T. & Manji, H. K. Immune targets for therapeutic development in depression: towards precision medicine. Nat. Rev. Drug Discov. 21, 224–244 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Goldsmith, D. R., Rapaport, M. H. & Miller, B. J. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 21, 1696–1709 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang, J.-J. & Jiang, W. Immune biomarkers alterations in post-traumatic stress disorder: a systematic review and meta-analysis. J. Affect. Disord. 268, 39–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Osimo, E. F. et al. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 87, 901–909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Konuk, N. et al. Plasma levels of tumor necrosis factor-α and interleukin-6 in obsessive compulsive disorder. Mediators Inflamm. 2007, 65704 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Haroon, E. et al. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology 95, 43–49 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Enache, D. et al. Peripheral immune markers and antipsychotic non-response in psychosis. Schizophr. Res. 230, 1–8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kruse, J. L. et al. Depression treatment response to ketamine: sex-specific role of interleukin-8, but not other inflammatory markers. Transl. Psychiatry 11, 167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kruse, J. L. et al. Inflammation and improvement of depression following electroconvulsive therapy in treatment-resistant depression. J. Clin. Psychiatry 79, 17m11597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Harrison, N. A. et al. A neurocomputational account of how inflammation enhances sensitivity to punishments versus rewards. Biol. Psychiatry 80, 73–81 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Eisenberger, N. I. et al. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol. Psychiatry 68, 748–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Harrison, N. A. et al. Neural origins of human sickness in interoceptive responses to inflammation. Biol. Psychiatry 66, 415–422 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Capuron, L. et al. Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch. Gen. Psychiatry 69, 1044–1053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Felger, J. C. et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol. Psychiatry 21, 1358–1365 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Mehta, D. et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc. Natl Acad. Sci. USA 110, 8302–8307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Harrison, N. A. et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol. Psychiatry 66, 407–414 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Felger, J. C. et al. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatry 25, 1301–1311 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Mehta, N. D. et al. Inflammation negatively correlates with amygdala–ventromedial prefrontal functional connectivity in association with anxiety in patients with depression: preliminary results. Brain Behav. Immun. 73, 725–730 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Felger, J. C. et al. Chronic interferon-α decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates. Neuropsychopharmacology 38, 2179–2187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Haroon, E. et al. Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia. Transl. Psychiatry 8, 189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Çakici, N., van Beveren, N. J. M., Judge-Hundal, G., Koola, M. M. & Sommer, I. E. C. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol. Med. 49, 2307–2319 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Köhler-Forsberg, O. et al. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: meta-analysis of clinical trials. Acta Psychiatr. Scand. 139, 404–419 (2019).

    Article  PubMed  Google Scholar 

  163. Husain, M. I. et al. Minocycline and celecoxib as adjunctive treatments for bipolar depression: a multicentre, factorial design randomised controlled trial. Lancet Psychiatry 7, 515–527 (2020).

    Article  PubMed  Google Scholar 

  164. Hellmann-Regen, J. et al. Effect of minocycline on depressive symptoms in patients with treatment-resistant depression: a randomized clinical trial. JAMA Netw. Open 5, e2230367 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gribkoff, V. K. & Kaczmarek, L. K. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 120, 11–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Tricklebank, M. D., Robbins, T. W., Simmons, C. & Wong, E. H. F. Time to re-engage psychiatric drug discovery by strengthening confidence in preclinical psychopharmacology. Psychopharmacology 238, 1417–1436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wiltschko, A. B. et al. Revealing the structure of pharmacobehavioral space through motion sequencing. Nat. Neurosci. 23, 1433–1443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dang, J., King, K. M. & Inzlicht, M. Why are self-report and behavioral measures weakly correlated? Trends Cogn. Sci. 24, 267–269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Cohn, J. F. et al. Automated affect detection in deep brain stimulation for obsessive–compulsive disorder: a pilot study. Proc. ACM Int. Conf. Multimodal Interact. 2018, 40–44 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Darzi, A. et al. Facial action units and head dynamics in longitudinal interviews reveal OCD and depression severity and DBS energy. In 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition https://doi.org/10.1109/FG52635.2021.9667028 (IEEE, 2021).

  173. Ertugrul, I. O., Jeni, L. A., Ding, W. & Cohn, J. F. AFAR: a deep learning based tool for automated facial affect recognition. Proc. Int. Conf. Autom. Face Gesture Recognit. https://doi.org/10.1109/fg.2019.8756623 (2019).

  174. Vijay, S., Pennant, L., Öngür, D., Baker, J. & Morency, L.-P. Computational study of psychosis symptoms and facial expressions. (2016).

  175. Depp, C. A. et al. GPS mobility as a digital biomarker of negative symptoms in schizophrenia: a case control study. NPJ Digit. Med. 2, 108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Baker, J. T., Germine, L. T., Ressler, K. J., Rauch, S. L. & Carlezon, W. A. Digital devices and continuous telemetry: opportunities for aligning psychiatry and neuroscience. Neuropsychopharmacology 43, 2499–2503 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Shen, F. X. et al. An ethics checklist for digital health research in psychiatry: viewpoint. J. Med. Internet Res. 24, e31146 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Dell’Osso, B. & Ketter, T. A. Assessing efficacy/effectiveness and safety/tolerability profiles of adjunctive pramipexole in bipolar depression: acute versus long-term data. Int. Clin. Psychopharmacol. 28, 297–304 (2013).

    Article  PubMed  Google Scholar 

  179. Tundo, A., de Filippis, R. & De Crescenzo, F. Pramipexole in the treatment of unipolar and bipolar depression. a systematic review and meta-analysis. Acta Psychiatr. Scand. 140, 116–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Whitton, A. E. et al. Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain 143, 701–710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ye, Z., Hammer, A., Camara, E. & Münte, T. F. Pramipexole modulates the neural network of reward anticipation. Hum. Brain Mapp. 32, 800–811 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Carlezon, W. A. & Krystal, A. D. κ-opioid antagonists for psychiatric disorders: from bench to clinical trials. Depress. Anxiety 33, 895–906 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wise, T. et al. Cholinergic modulation of disorder-relevant neural circuits in generalized anxiety disorder. Biol. Psychiatry 87, 908–915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Javitt, D. C. Glycine transport inhibitors for the treatment of schizophrenia: symptom and disease modification. Curr. Opin. Drug Discov. Devel. 12, 468–478 (2009).

    CAS  PubMed  Google Scholar 

  185. Wilkinson, S. T. & Sanacora, G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today 24, 606–615 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Burgdorf, J. et al. The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience 308, 202–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Walkery, A., Leader, L. D., Cooke, E. & VandenBerg, A. Review of allopregnanolone agonist therapy for the treatment of depressive disorders. Drug Des. Devel. Ther. 15, 3017–3026 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zink, C. F. & Meyer-Lindenberg, A. Human neuroimaging of oxytocin and vasopressin in social cognition. Horm. Behav. 61, 400–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schiena, G. et al. Connectivity changes in major depressive disorder after rTMS: a review of functional and structural connectivity data. Epidemiol. Psychiatr. Sci. 30, e59 (2021).

  190. Chan, M. M. Y., Yau, S. S. Y. & Han, Y. M. Y. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: a systematic review and meta-analyses of human and rodent studies. Neurosci. Biobehav. Rev. 125, 392–416 (2021).

    Article  PubMed  Google Scholar 

  191. Leaver, A. M., Espinoza, R., Wade, B. & Narr, K. L. Parsing the network mechanisms of electroconvulsive therapy. Biol. Psychiatry 92, 193–203 (2021).

    Article  PubMed  Google Scholar 

  192. Lucido, M. J. et al. Aiding and abetting anhedonia: impact of inflammation on the brain and pharmacological implications. Pharmacol. Rev. 73, 1084–1117 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Goldsmith, D. R. et al. Protein and gene markers of metabolic dysfunction and inflammation together associate with functional connectivity in reward and motor circuits in depression. Brain Behav. Immun. 88, 193–202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Torous, J. et al. Characterizing the clinical relevance of digital phenotyping data quality with applications to a cohort with schizophrenia. NPJ Digit. Med. 1, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Lefaucheur, J.-P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin. Neurophysiol. 131, 474–528 (2020).

    Article  PubMed  Google Scholar 

  196. Stagg, C. J., Antal, A. & Nitsche, M. A. Physiology of transcranial direct current stimulation. J. ECT 34, 144–152 (2018).

    Article  PubMed  Google Scholar 

  197. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70, 886–897 (2011).

    Article  CAS  PubMed  Google Scholar 

  199. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. O’Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Coleman, J. R. I. et al. The genetics of the mood disorder spectrum: genome-wide association analyses of more than 185,000 cases and 439,000 controls. Biol. Psychiatry 88, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ruderfer, D. M. et al. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  211. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

    Article  Google Scholar 

  212. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wohleb, E. S. et al. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol. Psychiatry 75, 970–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. McKim, D. B. et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol. Psychiatry 23, 1421–1431 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Da Mesquita, S., Fu, Z. & Kipnis, J. The meningeal lymphatic system: a new player in neurophysiology. Neuron 100, 375–388 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Chen, X. et al. Kynurenines increase MRS metabolites in basal ganglia and decrease resting-state connectivity in frontostriatal reward circuitry in depression. Transl. Psychiatry 11, 456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine W. Scangos.

Ethics declarations

Competing interests

K.W.S. receives salary and equity options from Neumora Therapeutics. L.M.W. has received advisory board fees from One Mind PsyberGuide and the Laureate Institute for Brain Research and declares US patent applications 10/034,645 and 15/820,338: systems and methods for detecting complex networks in MRI image data. J.T.B. has received consulting fees and equity options from Mindstrong Health as well as consulting fees from Verily Life Sciences. A.H.M. has received consulting fees from Cerevel Therapeutics and Sirtsei Pharmaceuticals.

Peer review

Peer review information

Nature Medicine thanks Edward Bullmore, James Murrough and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scangos, K.W., State, M.W., Miller, A.H. et al. New and emerging approaches to treat psychiatric disorders. Nat Med 29, 317–333 (2023). https://doi.org/10.1038/s41591-022-02197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-022-02197-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing