Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Undulating changes in human plasma proteome profiles across the lifespan

Abstract

Aging is a predominant risk factor for several chronic diseases that limit healthspan1. Mechanisms of aging are thus increasingly recognized as potential therapeutic targets. Blood from young mice reverses aspects of aging and disease across multiple tissues2,3,4,5,6,7,8,9,10, which supports a hypothesis that age-related molecular changes in blood could provide new insights into age-related disease biology. We measured 2,925 plasma proteins from 4,263 young adults to nonagenarians (18–95 years old) and developed a new bioinformatics approach that uncovered marked non-linear alterations in the human plasma proteome with age. Waves of changes in the proteome in the fourth, seventh and eighth decades of life reflected distinct biological pathways and revealed differential associations with the genome and proteome of age-related diseases and phenotypic traits. This new approach to the study of aging led to the identification of unexpected signatures and pathways that might offer potential targets for age-related diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Clustering of protein trajectories identifies linear and non-linear changes during aging.
Fig. 3
Fig. 4

Data availability

We created a searchable web interface to mine the human INTERVAL and LonGenity datasets: https://twc-stanford.shinyapps.io/aging_plasma_proteome/.

The independent human cohorts and mouse protein data are available in Supplementary Tables 16 and 17. The INTERVAL data are available through the European Genome–Phenome Archive under accession EGAS00001002555.

Code availability

An R package for DE-SWAN is available in GitHub: http://lehallib.github.io/DEswan/.

References

  1. Harman, D. The aging process: major risk factor for disease and death. Proc. Natl Acad. Sci. USA 88, 5360–5363 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baht, G. S. et al. Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nat. Commun. 6, 7131 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, Q. et al. A young blood environment decreases aging of senile mice kidneys. J. Gerontol. A Biol. Sci. Med. Sci. 73, 421–428 (2018).

    Article  PubMed  CAS  Google Scholar 

  5. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salpeter, S. J. et al. Systemic regulation of the age-related decline of pancreatic beta-cell replication. Diabetes 62, 2843–2848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valdes, A. M., Glass, D. & Spector, T. D. Omics technologies and the study of human ageing. Nat. Rev. Genet. 14, 601–607 (2013).

    Article  PubMed  CAS  Google Scholar 

  12. Stegeman, R. & Weake, V. M. Transcriptional signatures of aging. J. Mol. Biol. 429, 2427–2437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aramillo Irizar, P. et al. Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat. Commun. 9, 327 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Di Angelantonio, E. et al. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors. Lancet 390, 2360–2371 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gubbi, S. et al. Effect of exceptional parental longevity and lifestyle factors on prevalence of cardiovascular disease in offspring. Am. J. Cardiol. 120, 2170–2175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 440 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Emilsson, V. et al. Co-regulatory networks of human serum proteins link genetics to disease. Science 361, 769–773 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5, e15004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Austad, S. N. & Fischer, K. E. Sex differences in lifespan. Cell Metab. 23, 1022–1033 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ostan, R. et al. Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin. Sci. 130, 1711–1725 (2016).

    Article  Google Scholar 

  22. Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell 17, e12799 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cohen, A. A. Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging. Biochim. Biophys. Acta. Mol. Basis Dis. 1864, 2680–2689 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Guiraud, S. et al. Identification of serum protein biomarkers for utrophin based DMD therapy. Sci. Rep. 7, 43697 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, R. N. et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 1, 87–105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sattlecker, M. et al. Alzheimer’s disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement. 10, 724–734 (2014).

    Article  PubMed  Google Scholar 

  28. Sullivan, K. D. et al. Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci. Rep. 7, 14818 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ganz, P. et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315, 2532–2541 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Carayol, J. et al. Protein quantitative trait locus study in obesity during weight-loss identifies a leptin regulator. Nat. Commun. 8, 2084 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Go, A. S. et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127, e6–e245 (2013).

    PubMed  Google Scholar 

  32. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Franceschi, C. et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front. Med. 5, 61 (2018).

    Article  Google Scholar 

  34. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Castellano, J. M., Kirby, E. D. & Wyss-Coray, T. Blood-borne revitalization of the aged brain. JAMA Neurol. 72, 1191–1194 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wiklund, F. E. et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell 9, 1057–1064 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Cohen, E. & Dillin, A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat. Rev. Neurosci. 9, 759–767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suhre, K. et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 8, 14357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sha, S. J., et al. Safety, tolerability, and feasibility of young plasma infusion in the plasma for Alzheimer symptom amelioration study: a randomized clinical trial. JAMA Neurol. 76, 35–40 (2018).

    Article  PubMed  Google Scholar 

  40. Mehan, M. R. et al. Protein signature of lung cancer tissues. PLoS One 7, e35157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Britschgi, M. et al. Modeling of pathological traits in Alzheimer’s disease based on systemic extracellular signaling proteome. Mol. Cell Proteomics 10, M111 008862 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Franceschi, C. et al. Genetics of healthy aging in Europe: the EU-integrated project GEHA (GEnetics of Healthy Aging). Ann. NY Acad. Sci. 1100, 21–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2011).

  44. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statis. Soc. B 57, 289–300 (1995).

    Google Scholar 

  45. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 42, D472–D477 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for Gene Ontology. https://doi.org/10.18129/B9.bioc.topGO (2016).

  49. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carlson, M. org.Hs.eg.db: genome wide annotation for human. https://doi.org/10.18129/B9.bioc.org.Hs.eg.db (2017).

  51. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Castellano, J. M. et al. In vivo assessment of behavioral recovery and circulatory exchange in the peritoneal parabiosis model. Sci. Rep. 6, 29015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: efficient manipulation of biological strings. https://doi.org/10.18129/B9.bioc.Biostrings (2019).

  54. Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw 22, 1–20 (2007).

    Article  Google Scholar 

  55. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lehallier, B. et al. Combined plasma and cerebrospinal fluid signature for the prediction of midterm progression from mild cognitive impairment to Alzheimer disease. JAMA Neurol. 73, 203–212 (2016).

    Article  PubMed  Google Scholar 

  57. Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Epskamp, S., Cramer, A., Waldorp, L., Schmittmann, V. & Borsboom, D. qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012).

Download references

Acknowledgements

We thank the members of the Wyss-Coray laboratory for feedback and support. We thank the clinical staff for human blood and plasma collection/coordination. We thank A. Butterworth for his help in getting access to the INTERVAL proteomics data. The AddNeuroMed data are from a public–private partnership supported by EFPIA companies and the European Union Sixth Framework program priority FP6-2004-LIFESCIHEALTH-5. Clinical leads responsible for data collection were I. Kłoszewska (Lodz), S. Lovestone (London), P. Mecocci (Perugia), H. Soininen (Kuopio), M. Tsolaki (Thessaloniki) and B. Vellas (Toulouse); imaging leads were A. Simmons (London), L.O. Wahlund (Stockholm) and C. Spenger (Zurich); and bioinformatics leads were R. Dobson (London) and S. Newhouse (London). This work was supported by National Institutes of Health National Institute on Aging (NIA) F32 1F32AG055255 01A1 (D.G.), Hungarian Brain Research Program Grant No. 2017-1.2.1-NKP-2017-00002 (T.N.), the Fulbright Foreign Student Program (T.N.), the Cure Alzheimer’s Fund (T.W.-C.), Nan Fung Life Sciences (T.W.-C.), the NOMIS Foundation (T.W.-C.), the Stanford Brain Rejuvenation Project (an initiative of the Stanford Wu Tsai Neurosciences Institute), the Paul F. Glenn Center for Aging Research (T.W.-C.), NIA R01 AG04503 and DP1 AG053015 (T.W.-C.) and the NIA-funded Stanford Alzheimer’s Disease Research Center P50AG047366, NIA K23AG051148 (S.M.), R01AG061155 (S.M.), the American Federation for Aging Research (S.M.), R01AG044829 (J.V. and N.B.), NIA R01AG057909 (N.B.), the Nathan Shock Center of Excellence for the Basic Biology of Aging P30AG038072 (N.B.) and the Glenn Center for the Biology of Human Aging (N.B.).

Author information

Authors and Affiliations

Authors

Contributions

B.L. and T.W.-C. planned the study. D.B., C.F., S.M., J.V., S.S. and N.B. provided human plasma samples. N.S., S.E.L. and H.Y. performed the mouse experiments. B.L. analyzed the data, with contributions from T.N. and A.K. P.M.L. developed the searchable web interface (shiny app). B.L., D.G. and T.W.-C. wrote the manuscript. A.K., C.F., S.M., J.V., S.S., N.B. and T.W.-C. supervised the study. All authors edited and reviewed the manuscript.

Corresponding authors

Correspondence to Benoit Lehallier or Tony Wyss-Coray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Brett Bennedetti and Jennifer Sargent were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sample demographics.

Age (a, b), cohort (a, b) and sex distributions (c) of the 4,263 subjects from the INTERVAL and LonGenity cohorts. (d) Age and cohort distributions of the 171 subjects from the 4 independent cohorts.

Extended Data Fig. 2 Comparing age and sex effects in independent cohorts.

(a) Age and sex effects in the INTERVAL and LonGenity studies (n = 4,263) were compared to age and sex effects in 4 independent cohorts analyzed together (n = 171) and to age effect from Tanaka et al. (n = 240, 2018). The aging plasma proteome was measured with the SomaScan assay in these cohorts and 888 proteins were measured in all studies (b) Scatter plot representing the signed -log10(q value) of the sex effect in the INTERVAL/LonGenity cohorts (x axis, n = 4,263) vs the 4 independent cohorts (y-axis, n = 171). Similar analysis for the age effect in the 4 independent cohorts (c, n = 171) and in Tanaka et al study (d, n = 240).

Extended Data Fig. 3 Deeper investigation of the aging proteomic clock.

(a) Prediction of age in the 4 independent cohorts (n = 171) using the proteomic clock. Only 141 proteins out of the 373 constituting the clock were measured in these samples. (b) Prediction of age in the discovery cohort (n = 2,817) using the 373 plasma markers. (c) Feature reduction of the aging model in the Discovery and Validation cohorts to estimate whether a subset of the aging signature can provide similar results to the 373 aging proteins. Dashed lines represent a broken stick model and indicate the best compromise between number of variables and prediction accuracy. (d) Heatmap representing the associations between delta age and 334 clinical and functional variables. For quantitative traits, linear models adjusted for delta age, age and sex were used and significance was tested using F-test. For binary outcomes, binomial generalized linear models adjusted for delta age, age and sex were used and significance was tested using likelihood ratio chi-square test. As in (c) the analysis was performed for the top 2 to top 373 variables predicting age. The non-uniformity in the heatmaps suggests that specific subsets of proteins may best predict certain clinical and functional parameters.

Extended Data Fig. 4 Proteins and proteome undulations in independent human cohorts and in mouse.

(a) Trajectories of 5 selected proteins based on the INTERVAL and LonGenity cohorts (n = 4,263, left) and 4 independent human cohorts (n = 171, right). Trajectories were estimated using LOESS regression. Undulation of the 1,305 plasma proteins measured in 4 independent cohorts (b, n = 171) and in mouse (c, n = 81). Plasma proteins levels were z-scored and LOESS regression was fitted for each plasma factor.

Extended Data Fig. 5 Cluster trajectories in independent cohorts.

Protein trajectories for the 8 clusters identified in the INTERVAL and LonGenity cohorts (left column). Thicker lines represent the average trajectory for each cluster. Cluster trajectories for the subset of proteins measured in the 4 independent cohorts (middle column). Corresponding cluster trajectories in 4 independent cohorts (right column).

Extended Data Fig. 6 Pathways in clusters.

Pathway enrichment was tested using GO, Reactome and KEGG databases (n = 4,263). Enrichment was tested using Fisher’s exact test (GO) and hypergeometric test (Reactome and KEGG). The top 4 pathways for each cluster are shown. Pathway IDs and number of plasma proteins associated are represented in the table.

Extended Data Fig. 7 DE-SWAN age effect for multiple q-values cutoffs, windows size and after phenotypes permutations.

Different Q-value cutoffs are represented in (a). Similar analysis with different after phenotype permutations (b) and different windows size in (c). The 3 local peaks identified at age 34, 60 and 78 are indicated by colored vertical lines.

Extended Data Fig. 8 Cis-associations and aging waves.

Enrichment for cis-association in the waves of aging proteins identified by DE-SWAN. Aging proteins were ranked based on p-values at age 34, 60 and 78 and the cumulative number of cis-associations was counted. One-sided permutation tests (1e + 5 permutations) were used to assess significance.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4

Reporting Summary

Supplementary Tables

Supplementary Tables 1–17

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehallier, B., Gate, D., Schaum, N. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med 25, 1843–1850 (2019). https://doi.org/10.1038/s41591-019-0673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-019-0673-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing