Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurogenetic contributions to amyloid beta and tau spreading in the human cortex

Abstract

Tau and amyloid beta (Aβ) proteins accumulate along neuronal circuits in Alzheimer’s disease. Unraveling the genetic background for the regional vulnerability of these proteinopathies can help in understanding the mechanisms of pathology progression. To that end, we developed a novel graph theory approach and used it to investigate the intersection of longitudinal Aβ and tau positron emission tomography imaging of healthy adult individuals and the genetic transcriptome of the Allen Human Brain Atlas. We identified distinctive pathways for tau and Aβ accumulation, of which the tau pathways correlated with cognitive levels. We found that tau propagation and Aβ propagation patterns were associated with a common genetic profile related to lipid metabolism, in which APOE played a central role, whereas the tau-specific genetic profile was classified as ‘axon related’ and the Aβ profile as ‘dendrite related’. This study reveals distinct genetic profiles that may confer vulnerability to tau and Aβ in vivo propagation in the human brain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Propagation routes from prominent areas of tau and amyloid deposits.
Fig. 2: Hubs of pathology propagation of tau and amyloid.
Fig. 3: Tau and amyloid propagation-based staging.
Fig. 4: Brain colocalization of in vivo propagation patterns and Allen gene expression data.
Fig. 5: Interactome and Gene Ontology analyses of imaging genetic profiles.
Fig. 6: Propagation-based staging of tau and Aβ and APOE genotype in individuals.

Data availability

All neuroimaging and clinical data that support the findings of this study are available from https://nmr.mgh.harvard.edu/lab/harvard-aging-brain-study/public-data-releases. HABS data curation is overseen by Aaron P. Schultz (aschultz@nmr.mgh.harvard.edu) at the Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

References

  1. 1.

    Braak, H. & Braak, E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol. Scand. Suppl. 165, 3–12 (1996).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Thal, D. R., Rüb, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Braak, H., Del Tredici, K., Schultz, C. & Braak, E. Vulnerability of select neuronal types to Alzheimer’s disease. Ann. N. Y. Acad. Sci. 924, 53–61 (2000).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Wu J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085–1092 (2016).

  5. 5.

    Khan, U. A. et al. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci. 17, 304–311 (2014).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet. 43, 436–441 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Roussotte, F. F. et al. Combined effects of Alzheimer risk variants in the CLU and ApoE genes on ventricular expansion patterns in the elderly. J. Neurosci. 34, 6537–6545 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Karch, C. M. & Goate, A. M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 77, 43–51 (2015).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Beecham, G. W. et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 10, e1004606 (2014).

  11. 11.

    Allen, M. et al. Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels. Alzheimers Res. Ther. 6, 39 (2014).

  12. 12.

    Shen, E. H., Overly, C. C. & Jones, A. R. The Allen Human Brain Atlas. Comprehensive gene expression mapping of the human brain. Trends Neurosci. 35, 711–714 (2012).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Jones, A. R., Overly, C. C. & Sunkin, S. M. The Allen Brain Atlas: 5 years and beyond. Nat. Rev. Neurosci. 10, 821–828 (2009).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Dagley, A. et al. Harvard Aging Brain Study: dataset and accessibility. Neuroimage 144, 255–258 (2017).

    Article  PubMed  Google Scholar 

  17. 17.

    Johnson, K. A. et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann. Neurol. 79, 110–119 (2016).

    Article  PubMed  Google Scholar 

  18. 18.

    Sepulcre, J., Sabuncu, M., Becker, A., Sperling, R. & Johnson, K. In vivo characterization of the early states of the amyloid-beta network. Brain 136, 2239–2252 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Sepulcre, J. et al. In vivo tau, amyloid, and gray matter profiles in the aging brain. J. Neurosci. 36, 7364–7374 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Freer, R. et al. A protein homeostasis signature in healthy brains recapitulates tissue vulnerability to Alzheimer’s disease. Sci. Adv. 2, e1600947 (2016).

  21. 21.

    Chien, D. et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T807. J. Alzheimers Dis. 34, 457–468 (2013).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Maruyama, M. et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79, 1094–1108 (2013).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Okamura, N. et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J. Nucl. Med. 54, 1420–1427 (2013).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Villemagne, V. L. et al. In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 41, 816–826 (2014).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Schöll, M. et al. PET imaging of tau deposition in the aging human brain. Neuron 89, 971–982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sepulcre, J. et al. Hierarchical organization of tau and amyloid deposits in the cerebral cortex. JAMA Neurol. 74, 813–820 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R. & Van Hoesen, G. W. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb. Cortex 1, 103–116 (1991).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. & Barnes, C. L. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kalus, P., Braak, H., Braak, E. & Bohl, J. The presubicular region in Alzheimer’s disease: topography of amyloid deposits and neurofibrillary changes. Brain Res. 494, 198–203 (1989).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21, 424–430 (2008).

    Article  PubMed  Google Scholar 

  33. 33.

    Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Kuchibhotla, K. V. et al. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc. Natl Acad. Sci. USA 111, 510–514 (2014).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Sepulcre, J. et al. Tau and amyloid β proteins distinctively associate to functional network changes in the aging brain. Alzheimers Dement. 13, 1261–1269 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hansson, O. et al. Tau pathology distribution in Alzheimer’s disease corresponds differentially to cognition-relevant functional brain networks. Front. Neurosci. 11, 167 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Serrano-Pozo, A., Frosch, M. P., Masliah, E. & Hyman, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189 (2011).

  40. 40.

    Bero, A. W. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 14, 750–756 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Marquié, M. et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann. Neurol. 78, 787–800 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Jacobs, H. I. L. et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat. Neurosci. 21, 424–431 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Marioni, R. E. et al. Genetic stratification to identify risk groups for Alzheimer’s disease. J. Alzheimers Dis. 57, 275–283 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362–381 (2013).

    Article  Google Scholar 

  46. 46.

    Duyckaerts, C. et al. PART is part of Alzheimer disease. Acta Neuropathol. 129, 749–756 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Theendakara, V. et al. Direct transcriptional effects of apolipoprotein E. J. Neurosci. 36, 685–700 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mormino, E. C. et al. Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid β. Alzheimers Dement. 13, 1004–1012 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Mathis, C. A. et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem. 46, 2740–2754 (2003).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Grubbs, F. E. Procedures for detecting outlying observations in samples. Technometrics 11, 1–21 (1969).

    Article  Google Scholar 

  52. 52.

    Donoho, D. L. & Grimes, C. Image manifolds which are isometric to Euclidean space. J. Math. Imaging Vis. 23, 5–24 (2005).

    Article  Google Scholar 

  53. 53.

    Meyer, F. G. & Shen, X. Perturbation of the eigenvectors of the graph Laplacian: application to image denoising. Appl. Comput. Harmon. Anal. 36, 326–334 (2014).

  54. 54.

    Zhang, F. & Hancock, E. R. Graph spectral image smoothing using the heat kernel. Pattern Recognit. 41, 3328–3342 (2008).

    Article  Google Scholar 

  55. 55.

    Greve, D. N. et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. Neuroimage 92, 225–236 (2014).

    Article  PubMed  Google Scholar 

  56. 56.

    Hanseeuw, B. J. et al. Fluorodeoxyglucose metabolism associated with tau–amyloid interaction predicts memory decline. Ann. Neurol. 81, 583–596 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  58. 58.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    Google Scholar 

  59. 59.

    Van Essen, D. C. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005).

    Article  PubMed  Google Scholar 

  60. 60.

    Cho, H. et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann. Neurol. 80, 247–258 (2016).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Grothe, M. J. et al. In vivo staging of regional amyloid deposition. Neurology 89, 2031–2038 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Chhatwal, J. P. et al. Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly. Neurology 87, 920–926 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Hedden, T. et al. Cognitive profile of amyloid burden and white matter hyperintensities in cognitively normal older adults. J. Neurosci. 32, 16233–16242 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    French, L. & Paus, T. A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas. Front. Neurosci. 9, 1–5 (2015).

    Article  Google Scholar 

  65. 65.

    Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C. & Morris, Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9, S4 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Lopes, C. T. et al. Cytoscape Web: an interactive web-based network browser. Bioinformatics 27, 2347–2348 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the investigators and staff of the Harvard Aging Brain Study, Massachusetts Alzheimer’s Disease Research Center, the individual research participants, and their families and caregivers. We also thank the PET Core of the MGH, the Harvard Center for Brain Science Neuroimaging Core and the Athinoula A. Martinos Center for biomedical imaging support. This research was supported by grants from the National Institutes of Health (NIH) (K23-EB019023 to J.S.; T32EB013180 to L.O.-T.; R01HL137230 and P41-EB022544 to G.E.-F.; R01-AG027435-S1 to R.A.S. and K.A.J.; P50-AG00513421 and R01AG046396 to K.A.J. and R.A.S.; P01-AG036694 to R.A.S. and K.A.J.; and RF1AG052653 to Q.L.); Massachusetts ADRC; Alzheimer’s Association (NIRG-11-205690 to J.S.; IIRG-06-32444 to R.A.S. and K.A.J.; and ZEN-10-174210 to K.A.J.); and the Alzheimer Forschung Initiative e.V. (to M.J.G.). The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Author information

Affiliations

Authors

Contributions

J.S. contributed to the design, analysis and interpretation of the data and preparation of the manuscript. M.J.G. contributed to the design, analysis and interpretation of the data and preparation of the manuscript. F.d.U. contributed to the analysis of the data and preparation of the manuscript. L.O.-T. contributed to the analysis of the data and preparation of the manuscript. I.D. contributed to the analysis and interpretation of the data and preparation of the manuscript. H.-S.Y. contributed to the analysis of the data and preparation of the manuscript. H.I.L.J. contributed to the interpretation of the data and preparation of the manuscript. B.H. contributed to the interpretation of the data and preparation of the manuscript. Q.L. contributed to the interpretation of the data and preparation of the manuscript. G.E.-F. contributed to the interpretation of the data and preparation of the manuscript. R.A.S. contributed to the design and interpretation of the data and preparation of the manuscript. K.A.J. contributed to the design and interpretation of the data and preparation of the manuscript.

Corresponding author

Correspondence to Jorge Sepulcre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–12

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sepulcre, J., Grothe, M.J., d’Oleire Uquillas, F. et al. Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med 24, 1910–1918 (2018). https://doi.org/10.1038/s41591-018-0206-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing