Monotherapy of HIV-1 infection with single antiretroviral agents is ineffective because error-prone HIV-1 replication leads to the production of drug-resistant viral variants1,2. Combinations of drugs can establish long-term control, however, antiretroviral therapy (ART) requires daily dosing, can cause side effects and does not eradicate the infection3,4. Although anti-HIV-1 antibodies constitute a potential alternative to ART5,6, treatment of viremic individuals with a single antibody also results in emergence of resistant viral variants7,8,9. Moreover, combinations of first-generation anti-HIV-1 broadly neutralizing antibodies (bNAbs) had little measurable effect on the infection10,11,12. Here we report on a phase 1b clinical trial (NCT02825797) in which two potent bNAbs, 3BNC11713 and 10-107414, were administered in combination to seven HIV-1 viremic individuals. Infusions of 30 mg kg−1 of each of the antibodies were well-tolerated. In the four individuals with dual antibody-sensitive viruses, immunotherapy resulted in an average reduction in HIV-1 viral load of 2.05 log10 copies per ml that remained significantly reduced for three months following the first of up to three infusions. In addition, none of these individuals developed resistance to both antibodies. Larger studies will be necessary to confirm the efficacy of antibody combinations in reducing HIV-1 viremia and limiting the emergence of resistant viral variants.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All requests for raw and analyzed data and materials are promptly reviewed by the Rockefeller University to verify whether the request is subject to any intellectual property or confidentiality obligations. Patient-related data not included in the paper were generated as part of clinical trials and may be subject to patient confidentiality. Any data and materials that can be shared will be released via a Material Transfer Agreement. HIV-1 envelope SGA data are available in GenBank, accession numbers MH632763MH633255.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Ndung’u, T. & Weiss, R. A. On HIV diversity. AIDS 26, 1255–1260 (2012).

  2. 2.

    Bailey, J., Blankson, J. N., Wind-Rotolo, M. & Siliciano, R. F. Mechanisms of HIV-1 escape from immune responses and antiretroviral drugs. Curr. Opin. Immunol. 16, 470–476 (2004).

  3. 3.

    Siliciano, J. D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727–728 (2003).

  4. 4.

    Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5, 512–517 (1999).

  5. 5.

    Walker, L. M. & Burton, D. R. Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat. Rev. Immunol. 18, 297–308 (2018).

  6. 6.

    Klein, F. et al. Antibodies in HIV-1 vaccine development and therapy. Science 341, 1199–1204 (2013).

  7. 7.

    Caskey, M. et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522, 487–491 (2015).

  8. 8.

    Caskey, M. et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat. Med. 23, 185–191 (2017).

  9. 9.

    Lynch, R. M. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 7, 319ra206 (2015).

  10. 10.

    Armbruster, C. et al. Passive immunization with the anti-HIV-1 human monoclonal antibody (hMAb) 4E10 and the hMAb combination 4E10/2F5/2G12. J. Antimicrob. Chemother. 54, 915–920 (2004).

  11. 11.

    Mehandru, S. et al. Adjunctive passive immunotherapy in human immunodeficiency virus type 1-infected individuals treated with antiviral therapy during acute and early infection. J. Virol. 81, 11016–11031 (2007).

  12. 12.

    Trkola, A. et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat. Med. 11, 615–622 (2005).

  13. 13.

    Scheid, J. F. et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637 (2011).

  14. 14.

    Mouquet, H. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl Acad. Sci. USA 109, E3268–E3277 (2012).

  15. 15.

    Mendoza, P. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature https://doi.org/10.1038/s41586-018-0531-2 (2018).

  16. 16.

    Sarzotti-Kelsoe, M. et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 409, 131–146 (2014).

  17. 17.

    Scheid, J. F. et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 535, 556–560 (2016).

  18. 18.

    Cohen, Y. Z. et al. Neutralizing activity of broadly neutralizing anti-HIV-1 antibodies against clade B clinical isolates produced in peripheral blood mononuclear cells. J. Virol. 92, e01883-17 (2018).

  19. 19.

    Keizer, R. J., Huitema, A. D., Schellens, J. H. & Beijnen, J. H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 49, 493–507 (2010).

  20. 20.

    Horwitz, J. A. et al. HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc. Natl Acad. Sci. USA 110, 16538–16543 (2013).

  21. 21.

    Klein, F. et al. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492, 118–122 (2012).

  22. 22.

    Klein, F. et al. Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. J. Exp. Med. 211, 2361–2372 (2014).

  23. 23.

    Shingai, M. et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature 503, 277–280 (2013).

  24. 24.

    Nishimura, Y. et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature 543, 559–563 (2017).

  25. 25.

    Walker, B. D. & Yu, X. G. Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 13, 487–498 (2013).

  26. 26.

    Lynch, R. M. et al. HIV-1 fitness cost associated with escape from the VRC01 class of CD4 binding site neutralizing antibodies. J. Virol. 89, 4201–4213 (2015).

  27. 27.

    Diskin, R. et al. Restricting HIV-1 pathways for escape using rationally designed anti-HIV-1 antibodies. J. Exp. Med. 210, 1235–1249 (2013).

  28. 28.

    Gaudinski, M. R. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a phase 1 open-label clinical trial in healthy adults. PLoS Med. 15, e1002493 (2018).

  29. 29.

    Ko, S. Y. et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature 514, 642–645 (2014).

  30. 30.

    Robbie, G. J. et al. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob. Agents Chemother. 57, 6147–6153 (2013).

  31. 31.

    Gautam, R. et al. A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection. Nat. Med. 24, 610–616 (2018).

  32. 32.

    Zhou, T. et al. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 39, 245–258 (2013).

  33. 33.

    Schoofs, T. et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 352, 997–1001 (2016).

  34. 34.

    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

  35. 35.

    Hraber, P. et al. Longitudinal antigenic sequences and sites from intra-host evolution (LASSIE) identifies immune-selected HIV variants. Viruses 7, 5443–5475 (2015).

  36. 36.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

  37. 37.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  38. 38.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

  39. 39.

    Kirchherr, J. L. et al. High throughput functional analysis of HIV-1 env genes without cloning. J. Virol. Methods 143, 104–111 (2007).

Download references


We thank all study participants who devoted time to our research; members of the Klein and Nussenzweig laboratories for helpful discussions, especially P. Mendoza, C.-L. Lu, J. C. C. Lorenzi, L. Cohn and M. Jankovic; R. Levin, G. Kremer and D. Weiland for study coordination; the Rockefeller University Hospital Clinical Research Support Office and nursing staff as well as C. Golder, E. Thomas, M. Platten, S. Margane and T. Kümmerle for help with recruitment and study implementation; C. Ruping and M. Schlotz for help with sample processing; S. Kiss for ophthalmologic assessments; T. Keler and the Celldex Therapeutics team for 3BNC117 and 10-1074 manufacturing and regulatory support; C. Conrad for regulatory support; U. Kerkweg for pharmaceutical services; H. Janicki, M. Ercanoglu, P. Schommers and R. Kaiser for help with virus cultures; P. Fast and H. Park for clinical monitoring; S. McMillan, S. Mosher, S. Sawant, D. Beaumont, M. Sarzotti-Kelsoe, K. Greene, H. Gao and D. Montefiori for help with PK assay development, validation, reporting and/or project management; and S. Schlesinger for input on study design. This work was supported by The Bill and Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery (CAVD) grants OPP1092074, OPP1124068 (M.C.N.), CAVIMC OPP1146996 (G.D.T., M.S.S.); the NIH grants 1UM1 AI100663 and R01AI-129795 (M.C.N.); the Heisenberg-Program of the DFG (KL 2389/2-1), the European Research Council (ERC-StG639961) and the German Center for Infection Research (DZIF) (F.K.); the Einstein-Rockefeller-CUNY Center for AIDS Research (1P30AI124414-01A1); BEAT-HIV Delaney grant UM1 AI126620 (M.C.); and the Robertson fund. M.C.N. is a Howard Hughes Medical Institute Investigator.

Author information

Author notes

  1. These authors contributed equally: Yotam Bar-On, Henning Gruell.

  2. These authors jointly supervised this work: Marina Caskey, Florian Klein, Michel C. Nussenzweig.


  1. Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA

    • Yotam Bar-On
    • , Till Schoofs
    • , Joy A. Pai
    • , Lilian Nogueira
    • , Allison L. Butler
    • , Katrina Millard
    • , Thiago Y. Oliveira
    • , Theodora Karagounis
    • , Yehuda Z. Cohen
    • , Shiraz Belblidia
    • , Juan P. Dizon
    • , Maggi Witmer-Pack
    • , Irina Shimeliovich
    • , Jill Horowitz
    • , Marina Caskey
    •  & Michel C. Nussenzweig
  2. Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Cologne, Germany

    • Henning Gruell
    • , Till Schoofs
    • , Kanika Jain
    •  & Florian Klein
  3. Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany

    • Henning Gruell
    • , Clara Lehmann
    • , Isabelle Suárez
    • , Christoph Wyen
    • , Jörg J. Vehreschild
    • , Kerstin Fiddike
    •  & Gerd Fätkenheuer
  4. German Center for Infection Research, Partner Site Bonn–Cologne, Cologne, Germany

    • Henning Gruell
    • , Clara Lehmann
    • , Isabelle Suárez
    • , Jörg J. Vehreschild
    • , Gerd Fätkenheuer
    •  & Florian Klein
  5. Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany

    • Clara Lehmann
    • , Isabelle Suárez
    •  & Florian Klein
  6. Praxis am Ebertplatz, Cologne, Germany

    • Christoph Wyen
  7. Praxis Hohenstaufenring, Cologne, Germany

    • Stefan Scholten
  8. Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany

    • Lisa Handl
    •  & Nico Pfeifer
  9. Duke Human Vaccine Institute, Duke University, Durham, NC, USA

    • Kelly E. Seaton
    • , Nicole L. Yates
    •  & Georgia D. Tomaras
  10. Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA

    • Roy M. Gulick
  11. Medical Faculty, University of Tübingen, Tübingen, Germany

    • Nico Pfeifer
  12. German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany

    • Nico Pfeifer
  13. Max Planck Institute for Informatics, Saarbrücken, Germany

    • Nico Pfeifer
  14. Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA

    • Georgia D. Tomaras
  15. Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

    • Michael S. Seaman
  16. Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA

    • Michel C. Nussenzweig


  1. Search for Yotam Bar-On in:

  2. Search for Henning Gruell in:

  3. Search for Till Schoofs in:

  4. Search for Joy A. Pai in:

  5. Search for Lilian Nogueira in:

  6. Search for Allison L. Butler in:

  7. Search for Katrina Millard in:

  8. Search for Clara Lehmann in:

  9. Search for Isabelle Suárez in:

  10. Search for Thiago Y. Oliveira in:

  11. Search for Theodora Karagounis in:

  12. Search for Yehuda Z. Cohen in:

  13. Search for Christoph Wyen in:

  14. Search for Stefan Scholten in:

  15. Search for Lisa Handl in:

  16. Search for Shiraz Belblidia in:

  17. Search for Juan P. Dizon in:

  18. Search for Jörg J. Vehreschild in:

  19. Search for Maggi Witmer-Pack in:

  20. Search for Irina Shimeliovich in:

  21. Search for Kanika Jain in:

  22. Search for Kerstin Fiddike in:

  23. Search for Kelly E. Seaton in:

  24. Search for Nicole L. Yates in:

  25. Search for Jill Horowitz in:

  26. Search for Roy M. Gulick in:

  27. Search for Nico Pfeifer in:

  28. Search for Georgia D. Tomaras in:

  29. Search for Michael S. Seaman in:

  30. Search for Gerd Fätkenheuer in:

  31. Search for Marina Caskey in:

  32. Search for Florian Klein in:

  33. Search for Michel C. Nussenzweig in:


M.C. (principal investigator in the United States), F.K. (principal investigator in Germany) and M.C.N. designed the trial; Y.B.-O., H.G., M.C., F.K. and M.C.N. analyzed the data and wrote the manuscript; Y.B.-O., T.S. and T.K. performed single-genome sequencing; H.G., A.L.B., K.M., M.W.-P., K.F., J.H., M.C. and F.K. implemented the study; Y.Z.C., R.M.G. and G.F. contributed to study design and implementation; C.L., I.Su., C.W. and S.S. contributed to participant recruitment and clinical assessments; J.A.P. and T.Y.O. performed bioinformatics processing; H.G., L.N. and T.K. performed viral cultures; L.H. and N.P. contributed to statistical analyses; S.B., J.P.D., J.J.V., I.Sh. and K.J. performed, coordinated or contributed to sample processing; K.E.S., N.L.Y. and G.D.T. performed anti-idiotypic ELISAs; and M.S.S. performed neutralization assays.

Competing interests

There are patents on 3BNC117 and 10-1074 on which M.C.N. is an inventor.

Corresponding authors

Correspondence to Marina Caskey or Florian Klein or Michel C. Nussenzweig.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–9 and Supplementary Tables 1–6

  2. Reporting Summary

About this article

Publication history






Further reading