Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring

A Publisher Correction to this article was published on 07 August 2018

An Author Correction to this article was published on 07 August 2018

This article has been updated

Abstract

Recent research has focused on environmental effects that control tissue functionality and systemic metabolism. However, whether such stimuli affect human thermogenesis and body mass index (BMI) has not been explored. Here we show retrospectively that the presence of brown adipose tissue (BAT) and the season of conception are linked to BMI in humans. In mice, we demonstrate that cold exposure (CE) of males, but not females, before mating results in improved systemic metabolism and protection from diet-induced obesity of the male offspring. Integrated analyses of the DNA methylome and RNA sequencing of the sperm from male mice revealed several clusters of co-regulated differentially methylated regions (DMRs) and differentially expressed genes (DEGs), suggesting that the improved metabolic health of the offspring was due to enhanced BAT formation and increased neurogenesis. The conclusions are supported by cell-autonomous studies in the offspring that demonstrate an enhanced capacity to form mature active brown adipocytes, improved neuronal density and more norepinephrine release in BAT in response to cold stimulation. Taken together, our results indicate that in humans and in mice, seasonal or experimental CE induces an epigenetic programming of the sperm such that the offspring harbor hyperactive BAT and an improved adaptation to overnutrition and hypothermia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Parental cold exposure induces UCP1 expression in iBAT and ingWAT.
Fig. 2: Paternal cold exposure exclusively induces UCP1 expression in iBAT and ingWAT.
Fig. 3: Paternal cold exposure induces oxygen consumption in offspring after cold or ADRB3 agonist stimulation.
Fig. 4: Paternal cold exposure induces oxygen consumption in offspring due to increased BAT functionality.
Fig. 5: Paternal cold exposure protects offspring from high-fat-diet-induced obesity.
Fig. 6: Paternal cold exposure affects the transcriptional signature of the brown adipose tissue in the offspring and the epigenetic profile of the sperm.

Change history

  • 07 August 2018

    In the version of this article originally published, the bars in the mean temperature graph in Fig. 1a were incorrectly aligned. The left-most bar should have been aligned with the Apr label on the projected month of conception axis. The error has been corrected in the print, PDF and HTML versions of this article.

  • 07 August 2018

    In the version of this article originally published, the months on the axis labeled projected month of conception in Fig. 1a were out of order. April and March should have been the first and last months listed, respectively. The error has been corrected in the print, PDF and HTML versions of this article.

References

  1. 1.

    World Health Organization. Obesity and overweight. Retrieved 22 June, 2018 http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2017).

  2. 2.

    Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Tseng, Y. H., Cypess, A. M. & Kahn, C. R. Cellular bioenergetics as a target for obesity therapy. Nat. Rev. Drug Discov. 9, 465–482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Frontini, A. & Cinti, S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010).

    Article  CAS  Google Scholar 

  5. 5.

    Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36 (2014).

    Article  CAS  Google Scholar 

  6. 6.

    Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  Google Scholar 

  7. 7.

    Rosenwald, M. & Wolfrum, C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 3, 4–9 (2014).

    Article  CAS  Google Scholar 

  8. 8.

    Hany, T. F. et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 29, 1393–1398 (2002).

    Article  Google Scholar 

  9. 9.

    Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  Google Scholar 

  12. 12.

    Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    Article  CAS  Google Scholar 

  14. 14.

    Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  Google Scholar 

  15. 15.

    Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Yoneshiro, T. et al. Recruited brown adipose tissue as an anti-obesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ng, S. F. et al. Chronic high-fat diet in fathers programs beta cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article  CAS  Google Scholar 

  19. 19.

    Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Article  CAS  Google Scholar 

  20. 20.

    Seong, K. H., Li, D., Shimizu, H., Nakamura, R. & Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061 (2011).

    Article  CAS  Google Scholar 

  21. 21.

    Anderson, L. M. et al. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22, 327–331 (2006).

    Article  CAS  Google Scholar 

  22. 22.

    Ng, S. F. et al. Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J. 28, 1830–1841 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    Phillips, D. I. & Young, J. B. Birth weight, climate at birth and the risk of obesity in adult life. Int. J. Obes. Relat. Metab. Disord. 24, 281–287 (2000).

    Article  CAS  Google Scholar 

  24. 24.

    Kaufman, M. H. The Atlas of Mouse Development (Academic Press, London, 1994).

  25. 25.

    Rosenwald, M., Perdikari, A., Rülicke, T. & Wolfrum, C. Bidirectional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    Article  CAS  Google Scholar 

  26. 26.

    Hondares, E. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286, 12983–12990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  Google Scholar 

  28. 28.

    Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577–590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Öst, A. et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364 (2014).

    Article  CAS  Google Scholar 

  30. 30.

    Lv, J. et al. The associations of month of birth with body mass index, waist circumference and leg length: findings from the China Kadoorie Biobank of 0.5 million adults. J. Epidemiol. 25, 221–230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Speakman, J. R. & Heidari-Bakavoli, S. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature. Sci. Rep. 6, 30409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Valdés, S. et al. Ambient temperature and prevalence of obesity in the Spanish population: The Di@bet.es study. Obes. (Silver Spring) 22, 2328–2332 (2014).

    Article  Google Scholar 

  33. 33.

    Yang, H. K. et al. Ambient temperature and prevalence of obesity: a nationwide population-based study in Korea. PLoS One 10, e0141724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Afonso, A. Immigration and its impacts in Switzerland. Mediterranean Quarterly (Duke University Press) 15(4), 147–166 (2004).

  35. 35.

    Au-Yong, I. T. H., Thorn, N., Ganatra, R., Perkins, A. C. & Symonds, M. E. Brown adipose tissue and seasonal variation in humans. Diabetes 58, 2583–2587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Adefuye, A. O., Sales, K. J. & Katz, A. A. Seminal plasma induces the expression of IL-1α in normal and neoplastic cervical cells via EP2–EGFR–PI3K–AKT pathway. J. Mol. Signal. 9, 8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Zhang, Z. et al. Functional analysis of the cooled rat testis. J. Androl. 25, 57–68 (2004).

    Article  Google Scholar 

  38. 38.

    Fischer, A. W., Cannon, B. & Nedergaard, J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol. Metab. 7, 161–170 (2018).

    Article  CAS  Google Scholar 

  39. 39.

    Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  Google Scholar 

  40. 40.

    Shabalina, I. G. et al. UCP1 in brite (beige) adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5, 1196–1203 (2013).

    Article  CAS  Google Scholar 

  41. 41.

    Bronnikov, G., Houstĕk, J. & Nedergaard, J. β-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via β1- but not via β3-adrenoceptors. J. Biol. Chem. 267, 2006–2013 (1992).

    CAS  PubMed  Google Scholar 

  42. 42.

    Shea, J. M. et al. Genetic and epigenetic variation, but not diet, shape the sperm methylome. Dev. Cell 35, 750–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Rando, O. J. Intergenerational transfer of epigenetic information in sperm. Cold Spring Harb. Perspect. Med. 6, a022988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Daxinger, L. & Whitelaw, E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13, 153–162 (2012).

    Article  CAS  Google Scholar 

  46. 46.

    Becker, A. S., Nagel, H. W., Wolfrum, C. & Burger, I. A. Anatomical grading for metabolic activity of brown adipose tissue. PLoS One 11, e0149458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199–236 (2007).

    Article  Google Scholar 

  48. 48.

    Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Haueter, S. et al. Genetic vasectomy–overexpression of PRM1-EGFP fusion protein in elongating spermatids causes dominant male sterility in mice. Genesis 48, 151–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Abreu-Vieira, G. et al. Cidea improves the metabolic profile through expansion of adipose tissue. Nat. Commun. 6, 7433 (2015).

    Article  CAS  Google Scholar 

  52. 52.

    Pryce, C. R., Bettschen, D., Nanz-Bahr, N. I. & Feldon, J. Comparison of the effects of early handling and early deprivation on conditioned stimulus, context and spatial learning and memory in adult rats. Behav. Neurosci. 117, 883–893 (2003).

    Article  Google Scholar 

  53. 53.

    Spandl, J., White, D. J., Peychl, J. & Thiele, C. Live-cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic 10, 1579–1584 (2009).

    Article  CAS  Google Scholar 

  54. 54.

    Meissburger, B. et al. Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma. EMBO Mol. Med. 3, 637–651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Sanchez-Gurmaches, J. & Guertin, D. A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5, 4099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mehlem, A., Hagberg, C. E., Muhl, L., Eriksson, U. & Falkevall, A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc. 8, 1149–1154 (2013).

    Article  CAS  Google Scholar 

  57. 57.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    von Meyenn, F. et al. Comparative principles of dna methylation reprogramming during human and mouse in vitro primordial germ-cell specification. Dev. Cell 39, 104–115 (2016).

    Article  CAS  Google Scholar 

  59. 59.

    Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Stoffel, J. Krützfeldt and members of the Wolfrum lab for helpful discussions, K. Tabbada for assistance with WGBS high-throughput sequencing, and F. Krueger and S. Andrews for help with bioinformatics analysis. We thank K. De Bock and F. Zheng for the IB4 antibody and K. A. Rollins for editing the manuscript. Data produced and analyzed in this paper were generated in collaboration with the Genetic Diversity Center (GDC) and Functional Genomics Center Zurich (FGCZ). The work was supported by the Swiss National Science Foundation (SNSF; C.W. and F.v.M.).

Author information

Affiliations

Authors

Contributions

W.S. and C.W. designed the study; W.S. and H.D. performed all of the experimental work, except that described below; P.P. performed the IVF; S.M. helped with the Seahorse experiments; D.H.D. characterized the Ucp1-DTR-GFP mice; C.W., V.E., M.B. and D.H.D. contributed to the tracing of radiolabeled glucose; E.K. did paraffin sectioning; G.G. quantified lipid droplet sizes; A.P. helped with FACS; V.E. performed automated image analysis; L.G.S. helped with indirect calorimetry analysis; G.S. helped in the analysis of maternal behavior; D.P.-R. and W.S. did the microdialysis studies; A.S.B., I.A.B., S.B. and C.Z. performed the retrospective analysis of BAT in humans; L.O. contributed to RNA-seq data analysis; F.v.M. and W.R. did DNA methylation sequencing and bioinformatic analysis; W.S. and C.W. wrote the manuscript; and F.v.M., A.S.B., I.A.B., D.H.D., S.M., M.B. and L.B. helped with the editing of the manuscript.

Corresponding author

Correspondence to Christian Wolfrum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 3 and 4

Reporting Summary

Supplementary Table 1

Differentially expressed gene lists of iBAT RNA sequencing

Supplementary Table 2

Differentially methylated gene lists of sperm whole genome bisulfite sequencing

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Dong, H., Becker, A.S. et al. Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nat Med 24, 1372–1383 (2018). https://doi.org/10.1038/s41591-018-0102-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing