Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lupus autoantibodies initiate neuroinflammation sustained by continuous HMGB1:RAGE signaling and reversed by increased LAIR-1 expression

Abstract

Cognitive impairment is a frequent manifestation of neuropsychiatric systemic lupus erythematosus, present in up to 80% of patients and leading to a diminished quality of life. In the present study, we used a model of lupus-like cognitive impairment that is initiated when antibodies that crossreact with excitatory neuronal receptors penetrate the hippocampus, causing immediate, self-limited, excitotoxic death of hippocampal neurons, which is then followed by a significant loss of dendritic complexity in surviving neurons. This injury creates a maladaptive equilibrium that is sustained in mice for at least 1 year. We identified a feedforward loop of microglial activation and microglia-dependent synapse elimination dependent on neuronal secretion of high mobility group box 1 protein (HMGB1) which binds the receptor for advanced glycation end products (RAGE) and leads to microglial secretion of C1q, upregulation of interleukin-10 with consequent downregulation of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), an inhibitory receptor for C1q. Treatment with a centrally acting angiotensin-converting enzyme inhibitor or with an angiotensin-receptor blocker restored a healthy equilibrium, microglial quiescence and intact spatial memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microglia are activated by neuronal HMGB1.
Fig. 2: DNRAbs induce microglial activation through RAGE.
Fig. 3: Treatment with ACE inhibitors requires LAIR-1 for efficacy.
Fig. 4: Hippocampal microglial scRNA-seq shows that ACE inhibitors mitigate DNRAb phenotype.
Fig. 5: ARB replicates effects of ACE inhibitors on neurons and microglia.
Fig. 6: IL-10 is induced by HMGB1 and suppresses Lair1 expression.
Fig. 7: Outcomes of DNRAb-mediated neuronal damage.

Similar content being viewed by others

Data availability

The accession no. for the sequencing data reported in the present study is Gene Expression Omnibus (GEO) GSE230077 and can also be accessed through a single-cell portal, accession no. SCP2193. Previously published datasets used in identifying and naming clusters are publicly available: Allen Brain Atlas, GEO accession nos. GSE121654 and GSE152184. Previously published datasets used for microglial comparisons are publicly available at: GEO, accession no. GSE98971; Mendeley Data (1, 2): GEO accession no. GSE101689.

Code availability

Customized code can be accessed at https://github.com/seanken/LupusModel.

References

  1. Kello, N., Anderson, E. & Diamond, B. Cognitive dysfunction in systemic lupus erythematosus: a case for initiating trials. Arthritis Rheumatol. 71, 1413–1425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mackay, M. et al. Brain metabolism and autoantibody titres predict functional impairment in systemic lupus erythematosus. Lupus Sci. Med 2, e000074 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mackay, M. et al. Metabolic and microstructural alterations in the SLE brain correlate with cognitive impairment. JCI Insight 4, e124002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kowal, C. et al. Cognition and immunity: antibody impairs memory. Immunity 21, 179–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Degiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7, 1189–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Tay, S. H., Fairhurst, A. M. & Mak, A. Clinical utility of circulating anti-N-methyl-d-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjögren’s syndrome: an updated meta-analysis. Autoimmun. Rev. 16, 114–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Kowal, C. et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl Acad. Sci. USA 103, 19854–19859 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arinuma, Y., Yanagida, T. & Hirohata, S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 58, 1130–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Putterman, C. & Diamond, B. Immunization with a peptide surrogate for double-stranded DNA (dsDNA) induces autoantibody production and renal immunoglobulin deposition. J. Exp. Med. 188, 29–38 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang, E. H. et al. Selective impairment of spatial cognition caused by autoantibodies to the N-methyl-d-aspartate receptor. eBioMedicine 2, 755–764 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chan, K. et al. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat. Commun. 11, 1403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nestor, J. et al. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J. Exp. Med. 215, 2554–2566 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maroso, M. et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 16, 413–419 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Pedrazzi, M. et al. Potentiation of NMDA receptor-dependent cell responses by extracellular high mobility group box 1 protein. PLoS ONE 7, e44518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka, H. et al. HMGB1 signaling phosphorylates Ku70 and impairs DNA damage repair in Alzheimer’s disease pathology. Commun. Biol. 4, 1175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balosso, S., Liu, J., Bianchi, M. E. & Vezzani, A. Disulfide-containing high mobility group box-1 promotes N-methyl-d-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid. Redox Signal. 21, 1726–1740 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mazarati, A., Maroso, M., Iori, V., Vezzani, A. & Carli, M. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp. Neurol. 232, 143–148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, T., Son, M. & Diamond, B. HMGB1 in systemic lupus erythematosus. Front. Immunol. 11, 1057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Son, M. et al. C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 128, 2218–2228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilton, D. K. et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease. Nat. Med. 29, 2866–2884 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Esen, N. & Kielian, T. Effects of low dose GM-CSF on microglial inflammatory profiles to diverse pathogen-associated molecular patterns (PAMPs). J. Neuroinflam. 4, 10 (2007).

    Article  Google Scholar 

  23. Paudel, Y. N. et al. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s disease (AD): from risk factors to therapeutic targeting. Cells 9, 383 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang, P., Schachner, M. & Shen, Y. Q. HMGB1 in development and diseases of the central nervous system. Mol. Neurobiol. 45, 499–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Andersson, U., Yang, H. & Harris, H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin. Ther. Targets 22, 263–277 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Khalil, M., Inaba, K., Steinman, R., Ravetch, J. & Diamond, B. T cell studies in a peptide-induced model of systemic lupus erythematosus. J. Immunol. 166, 1667–1674 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, J. et al. Polyreactive autoantibodies in systemic lupus erythematosus have pathogenic potential. J. Autoimmun. 33, 270–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, T. et al. HMGB1-C1q complexes regulate macrophage function by switching between leukotriene and specialized proresolving mediator biosynthesis. Proc. Natl Acad. Sci. USA 116, 23254–23263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev. Neurosci. 35, 369–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Stephan, A. H. et al. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33, 13460–13474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gazestani, V. et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 186, 4438–4453 e4423 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271 e256 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Mercurio, D. et al. Protein expression of the microglial marker Tmem119 decreases in association with morphological changes and location in a mouse model of traumatic brain injury. Front. Cell Neurosci. 16, 820127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Ruan, C. & Elyaman, W. A new understanding of TMEM119 as a marker of microglia. Front. Cell Neurosci. 16, 902372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Makinde, H. M. et al. A novel microglia-specific transcriptional signature correlates with behavioral deficits in neuropsychiatric lupus. Front. Immunol. 11, 230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e569 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seliga, A. et al. Kallikrein-kinin system suppresses type I interferon responses: a novel pathway of interferon regulation. Front. Immunol. 9, 156 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jackson, L., Eldahshan, W., Fagan, S. & Ergul, A. Within the brain: the renin angiotensin system. Int. J. Mol. Sci. 19, 876 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Noda, M. et al. Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J. Neurochem. 101, 397–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Nocito, C. et al. Centrally acting angiotensin-converting enzyme inhibitor suppresses type i interferon responses and decreases inflammation in the periphery and the CNS in lupus-prone mice. Front. Immunol. 11, 573677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carvalheiro, T. et al. Leukocyte associated immunoglobulin like receptor 1 regulation and function on monocytes and dendritic cells during inflammation. Front. Immunol. 11, 1793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, Y., Smith, D. E., Ibanez-Sandoval, O., Sims, J. E. & Friedman, W. J. Neuron-specific effects of interleukin-1beta are mediated by a novel isoform of the IL-1 receptor accessory protein. J. Neurosci. 31, 18048–18059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vo, A. et al. Regional brain metabolism in a murine systemic lupus erythematosus model. J. Cereb. Blood Flow. Metab. 34, 1315–1320 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujita, K. et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep. 6, 31895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lecca, D. et al. Role of chronic neuroinflammation in neuroplasticity and cognitive function: a hypothesis. Alzheimers Dement. 18, 2327–2340 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Chavan, S. S. et al. HMGB1 mediates cognitive impairment in sepsis survivors. Mol. Med. 18, 930–937 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaghloul, N. et al. Forebrain cholinergic dysfunction and systemic and brain inflammation in murine sepsis survivors. Front. Immunol. 8, 1673 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Son, M., Diamond, B. & Shin, J. S. Editorial: The role of HMGB1 in immunity. Front. Immunol. 11, 594253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tamburini, B. et al. Emerging roles of cells and molecules of innate immunity in Alzheimer’s disease. Int. J. Mol. Sci. 24, 11922 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Hammond, T. R., Marsh, S. E. & Stevens, B. Immune signaling in neurodegeneration. Immunity 50, 955–974 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eyo, U. & Molofsky, A. V. Defining microglial-synapse interactions. Science 381, 1155–1156 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Zou, J. & Crews, F. T. Glutamate/NMDA excitotoxicity and HMGB1/TLR4 neuroimmune toxicity converge as components of neurodegeneration. AIMS Mol. Sci. 2, 77–100 (2015).

    Article  CAS  Google Scholar 

  57. Labandeira-Garcia, J. L. et al. Brain renin–angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front. Aging Neurosci. 9, 129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yang, X. F. et al. Myeloid angiotensin II type 1 receptor mediates macrophage polarization and promotes vascular injury in DOCA/salt hypertensive mice. Front. Pharm. 13, 879693 (2022).

    Article  CAS  Google Scholar 

  59. Cao, L. et al. Angiotensin II upregulates fibroblast-myofibroblast transition through Cx43-dependent CaMKII and TGF-beta1 signaling in neonatal rat cardiac fibroblasts. Acta Biochim Biophys. Sin. (Shanghai) 50, 843–852 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Quitterer, U. & AbdAlla, S. Improvements of symptoms of Alzheimer’s disease by inhibition of the angiotensin system. Pharmacol. Res. 154, 104230 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Nagy, A. et al. The correlation between two angiotensin-converting enzyme inhibitors’ concentrations and cognition. Int. J. Environ. Res Public Health 19, 14375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ghalayini, J. & Boulianne, G. L. Deciphering mechanisms of action of ACE inhibitors in neurodegeneration using Drosophila models of Alzheimer’s disease. Front. Neurosci. 17, 1166973 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. O’Caoimh, R. et al. Effects of centrally acting angiotensin converting enzyme inhibitors on functional decline in patients with Alzheimer’s disease. J. Alzheimers Dis. 40, 595–603 (2014).

    Article  PubMed  Google Scholar 

  64. Ichinose, K. et al. Predictors of clinical outcomes in patients with neuropsychiatric systemic lupus erythematosus. Cytokine 79, 31–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Faust, T. W. et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc. Natl Acad. Sci. USA 107, 18569–18574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Santiago, T. C. et al. Angiotensin-converting enzymes as druggable features of psychiatric and neurodegenerative disorders. J. Neurochem. https://doi.org/10.1111/jnc.15806 (2023).

    Article  PubMed  Google Scholar 

  67. Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bordt, E. A. et al. Isolation of microglia from mouse or human tissue. STAR Protoc. https://doi.org/10.1016/j.xpro.2020.100035 (2020).

  69. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bais, A. S. & Kostka, D. scds: computational annotation of doublets in single-cell RNA sequencing data. Bioinformatics 36, 1150–1158 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat. Neurosci. 25, 306–316 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451–464 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Strimmer, K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24, 1461–1462 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  79. Korsunsky, I., Nathan, A., Millard, N. & Raychaudhuri, S. Presto scales Wilcoxon and auROC analyses to millions of observations. Preprint at bioRxiv https://doi.org/10.1101/653253 (2019).

Download references

Acknowledgements

We thank R. A. Berlin and H. Khalili for their technical assistance. We also thank Y. Atisha-Fregoso, M. Lesser, R. Rasul, H. Rahman and C. Chuizan for their statistical expertise. The present study was supported by grants from the National Institutes of Health (NIH grant no. 1P01AI073693) to B.D. and J.Z.L.

Author information

Authors and Affiliations

Authors

Contributions

K.R.C., M.M. and S.S. wrote and edited the paper and designed, performed and analyzed experiments. B.T. designed, performed, and analyzed experiments. J.W., A.Z., N.K. and L.E.K. performed and analyzed experiments. N.T. and R.W.T. performed experiments. C.K. designed, performed and analyzed experiments and edited the paper. J.Z.L. designed and analyzed experiments, edited the paper and oversaw the studies. B.T.V. designed, performed and analyzed experiments, edited the paper and oversaw the studies. B.D. designed and analyzed experiments, wrote and edited the paper and oversaw the studies.

Corresponding author

Correspondence to Betty Diamond.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks George Tsokos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: N. Bernard, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Pathology is sustained for at least 12 months.

a) Decreased dendritic complexity in 12 month old (m.o.) Balb/c DNRAb+ compared with DNRAb mice (mean +/− SEM; n = 4-5 mice per group; n = 55-59 neurons analyzed per group; two-tailed linear mixed model test with Tukey adjustment; p = 0.016). b) Decreased dendritic spine density in 12 m.o. Balb/c DNRAb+ compared with DNRAb mice (median (solid line) with quartiles (dash); n = 4 mice per group; n = 15-18 neurons analyzed per group; two-tailed Mann-Whitney test; p < 0.0001). c) Representative sections of microglia in CA1 stratum radiatum stained for Iba1 (red) and CD68 (white) in 12 m.o. DNRAb+ and DNRAb Balb/c mice (n = 3 mice per group). d) Increased activation score in 12 m.o. Balb/c DNRAb+ microglia compared to 12 m.o. Balb/c DNRAb counterparts based on morphology and CD68 expression (median (solid line) with quartiles (dash); n = 3 mice per group; n = 110-169 microglia scored per group; two-tailed Mann-Whitney test; p < 0.0001).

Extended Data Fig. 2 Ex vivo adult microglia and neonatal cultures respond similarly to HMGB1.

Increased mRNA expression for a) Tnf (p = 0.0019); b) Il1b (p = 0.0030); c) C1qa (p = 0.1302); and d) Ifnb1 (p = 0.0453) in B6 microglia stimulated with 1 μg/ml HMGB1 compared with unstimulated microglia cultured in medium for 6 hours (mean +/− SD; ex vivo microglia isolated from 3-4 B6 mice; two-tailed unpaired t-test).

Extended Data Fig. 3 Acute neuronal loss is not affected by loss of RAGE or microglial LAIR-1.

a) Decreased CA1 neurons in WT B6 (p = 0.0004) and RAGE KO mDNRAb+ (p < 0.0001) mice compared to their mDNRAb counterparts (median (solid line) with quartiles (dash); n = 3-4 mice per group; n = 72-96 sections per group; two-tailed Kruskal-Wallis test). b) Decreased CA1 neurons in LAIR-1 cKO DNRAb+ mice compared to DNRAb (median (solid line) with quartiles (dash); n = 3 mice per group; n = 67-98 sections per group; two-tailed Mann-Whitney test; p = 0.0394).

Extended Data Fig. 4 Single-cell RNA-seq clustering and quality control.

a) UMAP plot colored by clustering. b) UMAP plot split by mouse of origin, colored by cell type. No evidence of strong batch effects in the UMAP space. c) Violin plot of various QC metrics of interest, with similar distributions observed in each mouse. QC metrics include the score returned by Azimuth (Azimuth Score), number of genes per cell (nGene), number of UMI per cell (nUMI), percent UMI coming from mitochondrial reads (Percent Mitochondrial), percent UMI mapping to ribosomal proteins (Percent Ribosomal Protein), and doublet scores (scds). d) Feature plots of genes associated with a known microglia activation signature73. Subclustering within microglia subtypes is largely driven by these variables. e) Feature plots of number of genes per cell (nGene) and number of UMIs per cell (nUMI). Subclustering within microglia subtypes is largely driven by these variables.

Extended Data Fig. 5 Concordance score of Ms4a7+ microglia with microglial gene signatures.

a) Higher DAM signature gene set score in Ms4a7+ compared with Homeostatic microglia (Keren-Shaul et al. (2017)35 median (solid line) with quartiles (dash); n = 3 mice per group; n = 2515-15285 cells/cluster; two-tailed Mann-Whitney test; p < 0.0001). b) Lower Homeostatic signature gene set score in Homeostatic compared with Ms4a7+ cluster (Keren-Shaul et al.35; median (solid line) with quartiles (dash); n = 3 mice per group; n = 2515-15285 cells/cluster; two-tailed Mann-Whitney test; p < 0.0001). c) Higher NPSLE signature gene set score in Ms4a7+ compared with Homeostatic microglia (Makinde et al.38; median (solid line) with quartiles (dash); n = 3 mice per group; n = 2515-15285 cells/cluster; two-tailed Mann-Whitney test; p < 0.0001). d) Higher MGnD signature gene set score in Ms4a7+ compared with Homeostatic microglia (Krasemann et al.39; median (solid line) with quartiles (dash); n = 3 mice per group; n = 2515-15285 cells/cluster; two-tailed Mann-Whitney test; p < 0.0001).

Extended Data Table 1 ScRNA-seq quality control metrics summary
Extended Data Table 2 ScRNA-seq cell cluster composition frequency and percentage
Extended Data Table 3 ScRNA-seq cell cluster comparison statistics
Extended Data Table 4 ScRNA-seq gene expression in Ms4a7+ cluster by sample
Extended Data Table 5 ScRNA-seq Ms4a7+ cell gene expression comparison statistics

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, K.R., Mizrachi, M., Simmons, S. et al. Lupus autoantibodies initiate neuroinflammation sustained by continuous HMGB1:RAGE signaling and reversed by increased LAIR-1 expression. Nat Immunol 25, 671–681 (2024). https://doi.org/10.1038/s41590-024-01772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-024-01772-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing