Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control

An Author Correction to this article was published on 17 March 2023

This article has been updated

Abstract

Antigen-specific CD8+ T cell accumulation in tumors is a prerequisite for effective immunotherapy, and yet the mechanisms of lymphocyte transit are not well defined. Here we show that tumor-associated lymphatic vessels control T cell exit from tumors via the chemokine CXCL12, and intratumoral antigen encounter tunes CXCR4 expression by effector CD8+ T cells. Only high-affinity antigen downregulates CXCR4 and upregulates the CXCL12 decoy receptor, ACKR3, thereby reducing CXCL12 sensitivity and promoting T cell retention. A diverse repertoire of functional tumor-specific CD8+ T cells, therefore, exit the tumor, which limits the pool of CD8+ T cells available to exert tumor control. CXCR4 inhibition or loss of lymphatic-specific CXCL12 boosts T cell retention and enhances tumor control. These data indicate that strategies to limit T cell egress might be an approach to boost the quantity and quality of intratumoral T cells and thereby response to immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dermal lymphatic vessels limit CD8+ T cell accumulation in melanoma.
Fig. 2: Functional tumor-specific effector CD8+ T cells egress from tumors via lymphatic vessels.
Fig. 3: Local antigen encounter links T cell function and migratory potential.
Fig. 4: Egressing T cell state is associated with response to ICB in humans.
Fig. 5: LEC-secreted CXCL12 sequesters CD8+ T cells in the tumor periphery.
Fig. 6: CXCL12–CXCR4 signaling blockade improves tumor control and immunotherapy.

Similar content being viewed by others

Data availability

Sequencing datasets have been deposited in the Gene Expression Omnibus database under accession codes GSE203307 (LEC bulk RNA-seq), GSE203557 (CD8+ T cell bulk RNA-seq) and GSE218455 (CD8+ T cell scRNA-seq) and are publicly available.

Code availability

Original code for vessel segmentation is available at https://github.com/amandalundlab/Vessel_Segmentation.

Change history

References

  1. Steele, M. M. & Lund, A. W. Afferent lymphatic transport and peripheral tissue. J. Immunol. 206, 264–272 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Lund, A. W. et al. Lymphatic vessels regulate immune microenvironments in human and mouse melanoma. J. Clin. Invest. 126, 3389–3402 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Loo, C. P. et al. Lymphatic vessels balance viral dissemination and immune activation following cutaneous viral infection. Cell Rep. 20, 3176–3187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alitalo, A. K. et al. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis. Cancer Res. 73, 4212–4221 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1, 191–199 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Gkountidi, A. O. et al. MHC class II antigen presentation by lymphatic endothelial cells in tumors promotes intratumoral regulatory T cell-suppressive functions. Cancer Immunol. Res. 9, 748–764 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Garnier, L. et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Sci. Adv. 8, eabl5162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lane, R. S. et al. IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J. Exp. Med. 215, 3057–3074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mackay, C. R., Kimpton, W. G., Brandon, M. R. & Cahill, R. N. Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J. Exp. Med. 167, 1755–1765 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Olszewski, W. L., Grzelak, I., Ziolkowska, A. & Engeset, A. Immune cell traffic from blood through the normal human skin to lymphatics. Clin. Dermatol. 13, 473–483 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein ‘Kaede’ transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871–10876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steele, M. et al. Quantifying leukocyte egress from mouse skin and tumors. J. Vis. Exp. 143, 58704 (2019).

    Google Scholar 

  16. Torcellan, T. et al. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc. Natl Acad. Sci. 114, 5677–5682 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Z. et al. In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue. J. Exp. Med. 219, e20210749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown, M. N. et al. Chemoattractant receptors and lymphocyte egress from extralymphoid tissue: changing requirements during the course of inflammation. J. Immunol. 185, 4873–4882 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Mäkinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7, 199–205 (2001).

    Article  PubMed  Google Scholar 

  20. Bengsch, B. et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity 48, 1029–1045 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Schneider, O. D., Weiss, A. A. & Miller, W. E. Pertussis toxin signals through the TCR to initiate cross-desensitization of the chemokine receptor CXCR4. J. Immunol. 182, 5730–5739 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kabashima, K. et al. CXCL12–CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171, 1249–1257 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt, T. H., Bannard, O., Gray, E. E. & Cyster, J. G. CXCR4 promotes B cell egress from Peyer’s patches. J. Exp. Med. 210, 1099–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wein, A. N. et al. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J. Exp. Med. 216, 2748–2762 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berkley, A. M. & Fink, P. J. Cutting edge: CD8+ recent thymic emigrants exhibit increased responses to low-affinity ligands and improved access to peripheral sites of inflammation. J. Immunol. 193, 3262–3266 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaiswal, A. et al. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell 40, 524–544 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gómez, D., Diehl, M. C., Crosby, E. J., Weinkopff, T. & Debes, G. F. Effector T cell egress via afferent lymph modulates local tissue. J. Immunol. 195, 3531–3536 (2015).

    Article  PubMed  Google Scholar 

  38. Lund, A. W. Immune potential untapped: leveraging the lymphatic system for cancer immunotherapy. Cancer Immunol. Res. 10, 1042–1046 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fankhauser, M. et al. Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci. Transl. Med. 9, eaal4712 (2017).

    Article  PubMed  Google Scholar 

  40. Song, E. et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577, 689–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sasso, M. S. et al. Lymphangiogenesis-inducing vaccines elicit potent and long-lasting T cell immunity against melanomas. Sci. Adv. 7, eabe4362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirosue, S. et al. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J. Immunol. 192, 5002–5011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Vigl, B. et al. Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 118, 205–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Geherin, S. A., Wilson, R. P., Jennrich, S. & Debes, G. F. CXCR4 is dispensable for T cell egress from chronically inflamed skin via the afferent lymph. PLoS ONE 9, e95626 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Burger, M. L. et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors. Cell 184, 4996–5014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Westcott, P. M. K. et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer. Nat. Cancer 2, 1071–1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shakiba, M. et al. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J. Exp. Med. 219, e20201966 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Lesch, S. et al. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat. Biomed. Eng. 5, 1246–1260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, I. X. et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl Acad. Sci. USA 116, 4558–4566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, Y. et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61, 1591–1602 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meeth, K., Wang, J. X., Micevic, G., Damsky, W. & Bosenberg, M. W. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res. 29, 590–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, J. et al. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. Pigment Cell Melanoma Res. 30, 428–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Broggi, M. A. S., Schmaler, M., Lagarde, N. & Rossi, S. W. Isolation of mouse lymph node stromal cells. J. Vis. Exp. 19, e51803 (2014).

    Google Scholar 

  62. Medler, T. R. et al. Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell 34, 561–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Nazarov, V. I. et al. tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics 16, 175 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Churchill, M. J. et al. Infection-induced lymphatic zippering restricts fluid transport and viral dissemination from skin. J. Exp. Med. 219, e20211830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge S. R. Schwab (New York University Grossman School of Medicine) for critical input and tools, I. Dolgalev of the Applied Bioinformatics Laboratory (New York University Grossman School of Medicine) for technical support and all members of the Lund Lab for critical feedback and technical support as well as our sources of funding: National Institutes of Health grant P30-CA069533 (L.M.C. and A.W.L.), National Institutes of Health grant U54 CA263001-01A1 (A.W.L.), National Institutes of Health grant P50 CA225450-01A1 (A.W.L.), National Institutes of Health grant R01CA238163 (A.W.L.), National Institutes of Health grant T32CA106195 (M.M.S.), National Institutes of Health grant T32GM136542 (H.d.B.), National Institutes of Health grant F31 CA268726-01A1 (H.d.B.), National Institutes of Health grant R56 AR078686 (N.A.), National Institutes of Health grant R01 AR080436 (N.A.), Cancer Research Institute, Lloyd J. Old STAR Award (A.W.L.), Melanoma Research Alliance 403191 https://doi.org/10.48050/pc.gr.44893 (A.W.L.), American Cancer Society RSG-18-169-01-LIB (A.W.L.), Brenden-Colson Center for Pancreatic Health (L.M.C.), Stand Up to Cancer—Lustgarten Foundation Pancreatic Cancer Convergence Dream Team Translational Research Grant SU2C-AACR-DT14-14 (L.M.C.), Swedish Research Council (Vetenskapsrådet), International Postdoc grant, Reg.Nr:2016-00215 (J.F.), National Institutes of Health grant P30-CA016087 (Laura and Isaac Perlmutter Cancer Center supporting the Flow Cytometry and Cell Sorting Core, the Experimental Pathology Research Laboratory and the Genome Technology Center (RRID: SCR_017929)) and National Institutes of Health grant P30-CA069533 (OHSU Knight Cancer Center supporting the Flow Cytometry and Cell Sorting Core, Massively Parallel Sequencing Shared Resource and Gene Profiling Shared Resource).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.M.S. and A.W.L. Methodology: M.M.S., C.H., D.M., J.F. and Y.H.C. Biospecimen acquisition: S.A.L. Investigation: M.M.S., A.J., I.D., I.D.D., S.S., H.d.B., D.M. and J.F. Funding acquisition: L.M.C. and A.W.L. Supervision: L.M.C., N.A. and A.W.L. Writing original draft: M.M.S. and A.W.L. Writing, reviewing and editing: M.M.S., A.J., I.D., S.S., I.D.D., H.d.B., D.M., C.H., J.F., L.M.C., N.A. and A.W.L.

Corresponding author

Correspondence to Amanda W. Lund.

Ethics declarations

Competing interests

A.W.L. declares having provided consulting services for AGS Therapeutics. L.M.C. declares having provided consulting services for Cell Signaling Technologies, AbbVie, the Susan G Komen Foundation and Shasqi, has received reagents and/or research support from Cell Signaling Technologies, Syndax Pharmaceuticals, ZelBio, Inc., Hibercell, Inc. and Acerta Pharma and has participated in advisory boards for Pharmacyclics, Syndax, Carisma, Verseau, CytomX, Kineta, Hibercell, Cell Signaling Technologies, Alkermes, Zymeworks, Genenta Sciences, Pio Therapeutics Pty, Ltd., PDX Pharmaceuticals, the AstraZeneca Partner of Choice Network, the Lustgarten Foundation and the NIH/NCI-Frederick National Laboratory Advisory Committee. N.A. declares having provided consulting/lecture services for Cellino Biotech, Immunitas, Shennon Biotechnologies and Janssen. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Evan Newell, Steven Stacker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: N. Bernard, in collaboration with the Nature Immunology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CD8+ T cells egress from tumors.

(a) Schematic representation of strategy to label and track endogenous leukocyte egress using the Kaede-Tg mouse model. (b) Representative gating scheme to identify egressed Kaede red+CD8+ T cells in tumor draining brachial LNs 24hrs post photoconversion of the tumor. (c) Representative flow plot of non-draining inguinal LNs 24hrs post photoconversion of the tumor. (d) Frequency of CD4+, CD4+CD25+Foxp3+ regulatory T cells (Treg), and CD8+ T cells of all photoconverted CD45+ leukocytes in the draining LN 24 hrs post photoconversion (n = 6) (e–f) Representative flow plots (e) and frequencies (f) of CD44/CD62L cell populations among intratumoral (T) or egressed (e) CD8+ T cells from YUMMER1.7-bearing Kaede-Tg mice (n = 6) 24hrs post photoconversion. For all experiments, each symbol represents one mouse. One-way ANOVA adjusted for multiple comparisons (d) and two-sided, paired student’s t-test (f).

Source data

Extended Data Fig. 2 Identification of tumor-specific CD44+ CD8+ T cells egressing tumors.

(a) Representative gating scheme identifying endogenous egressed Kaede red+ H-2Kb-OVA257-264+ CD44+CD8+ T cells in tumor draining brachial LNs 24hrs post photoconversion of MCA.205WT (WT) or MCA.205OVA (OVA) tumors. (b) Representative gating scheme identifying egressed Kaede red+ Thy1.1/1.1CD44+CD8+ OT-1-TCR-Tg T cells in tumor draining brachial LNs 24hrs post photoconversion of B16.F10WT (WT) or B16.F10OVA (OVA) tumors.

Extended Data Fig. 3 TCR-β-sequencing indicates clonal overlap between intratumoral and egressed CD8+ T cells.

Kaede red+ CD3ε+ T cells were sorted from YUMM1.7 draining LNs 24hrs post photoconversion and submitted for TCRβ deep sequencing along with matched intratumoral YUMM1.7 T cells (n = 5). In total, 5 mice were submitted for sequencing (a) Representative bubble plot (mouse 003) identifying clones sequenced in the egressed compartment (red), tumor compartment (blue), or both (Shared; green). (b) The percentage of sequenced clones detected in the tumor (T) or egressed (e) compartments, or both (shared; Sh). Each symbol represents one mouse. One-way ANOVA adjusted for multiple comparisons was used to determine statistical significance. (c) Pie charts for each mouse indicating the percentage of sequenced clones detected in the tumor (blue) or egressed (red) compartments or both (Shared; green). (d) Table demonstrating the clonal size criteria for classifying clones as hyperexpanded, large, medium, small, or rare clones. (e) Pie chart demonstrating the percentage of shared clones classified as hyperexpanded, large, medium, small, or rare clones averaged across all mice. (f) Pie charts demonstrating the percentage of shared clones classified as hyperexpanded, large, medium, small, or rare clones for each individual mouse.

Source data

Extended Data Fig. 4 Functional effector CD44+ CD8+ T cells egress from melanoma microenvironments.

(a) Volcano plot depicting differentially expressed genes (DEGs) between tumor retained and egressed CD8+CD44+ T cells (logFC≥1.5, FDR ≤ 0.05). (b) Pathway analysis of DEGs in (A) using HumanBase integrative analysis. (c and d) Representative flow plots (c) and frequencies (d) of LAG3+ intratumoral (T) or egressed (E) CD44+CD8+ T cells from YUMMER1.7-bearing Kaede-Tg mice (n = 3) 24hrs post photoconversion. (e and f) Representative flow plots (e) and frequencies (f) of PD-1+TIM3+ and PD-1-TIM3 intratumoral (T) or egressed (E) Thy1.1/1.1 CD44+ OT-1-Kaede-TCR-Tg T cells from B16.F10OVA-bearing mice (n = 4) 24hrs post photoconversion. (g and h) Representative flow plots (g) and frequencies (h) of PD-1/TCF1 intratumoral (T) or egressed (E) CD44+CD8+ T cells YUMMER1.7-bearing Kaede-Tg mice (n = 6) 24hrs post photoconversion. (i) PD-1 MFI of PD-1+CD8+ T cells from (g). (J and K) Representative flow plots (j) and frequency (k) of ex vivo IFNγ and TNFα production by intratumoral (T) or egressed (E) CD44+CD8+ T cells from YUMM1.7 tumors (day 21; n = 4) following ex-vivo restimulation. For all graphs, each symbol represents one mouse. Two-sided, paired and (D, F, H, and I) and unpaired student’s t-test (K). n.s. = not significant.

Source data

Extended Data Fig. 5 CD44+ CD8+ T cells egress from tumors is G protein-coupled receptor and CXCR4-dependent.

(a–c) YUMM1.7-bearing Kaede-Tg mice were treated with FTY720 (FTY) or pertussis toxin (PTx) the day before and day of photoconversion. (a) Frequency of CD8+ T cells (among live CD45+ cells) in the blood post treatment with pertussis toxin (PTx) or FTY720 (FTY). (b) Numbers of CD8+ T cells in YUMM1.7 tumors of Kaede-Tg mice post treatment with PTx or FTY720. (c) Numbers of Kaede red+CD8+ T cells in the dLNs of YUMM1.7 tumors of Kaede-Tg mice post treatment with PTx or FTY720. n = 7 vehicle control mice; n = 8 PTx-treated mice; n = 8 FTY-treated mice; each symbol represents one mouse; results of 2 independent experiments. (d) Representative histogram of CXCR4 surface expression on CD44+CD8+ T cells from spleen and YUMMER1.7 tumors. FMO = Fluorescence minus one (CXCR4). (e) Quantification of CXCR4 MFI in tumor and spleen. n = 3 mice; error bars = standard deviation. (f) Histograms confirming CXCR4 knockout on CD8+ T cells (left panel) or CD19+ B cells (right panel) from CXCR4WT (red) or CXCR4ΔUBC (blue) mice. (g) Numbers of CD45.2+CD8+ CXCR4WT (WT; n = 14) or CXCR4ΔUBC (KO; n = 13) T cells in dLNs of YUMMER1.7 tumors 16-20hrs following intratumoral transfer (per 104 transferred T cells). Each symbol represents one mouse. One-way ANOVA adjusted for multiple comparisons (a–c) and two-sided, paired (e) or unpaired (g) student’s t-test. n.s. = not significant.

Source data

Extended Data Fig. 6 CD8+ T cell functional states in murine melanomas.

(a) Heatmap of Seurat cluster defining genes arranged by Monocle Branch. (b–c) Bubble plot representation of key transcripts that distinguish Seurat (b) and Monocle clusters (c). (d) UMAP depicting Seurat clusters and (e) Monocle pseudotime trajectory analysis following cell cycle regression.

Extended Data Fig. 7 RNA-Seq of LECs sorted from naïve skin and BPC melanomas.

(a) Gating scheme for FACS of LECs (CD45CD31+gp38+) from naïve skin and BPC tumors. (b) Normalized transcript counts of genes validating LEC identity for CD45CD31+gp38+ cells sorted from naïve skin and BPC tumors. (c) Principal component analysis comparing the transcriptomes of LECs sorted from naïve skin and BPC tumors. (d) Heatmap of top differentially expressed genes among naïve and BPC-associated LECs. (e) Gene set enrichment analysis of pathways enriched in naïve vs BPC-associated LECs. (f–h) Normalized transcript counts for Ccl21a (f), Sphk2 (g), and Sphk1 (h) in naïve and BPC-associated LECs. Each symbol represents one mouse; n = 3 naïve and 4 BPC mice. Two-sided, unpaired student’s t test (g–h); n.s. = not significant.

Extended Data Fig. 8 Expression of Cxcl12 transcripts in YUMMER1.7 and YUMM1.7 tumor microenvironments.

(a) RNAScope of Cxcl12 transcripts in YUMMER1.7 tumors (purple); hematoxylin (blue). Repeated in 3 tumors. Left image: scale bar = 400 μm; middle and right images: scale bar = 200 μm (b) Frequency of Cxcl12-dsRed+ cells in YUMMER1.7 tumors (n = 11 across 2 independent experiments). (c) Representative flow plots of CD45CD31+gp38+dsRed+ lymphatic endothelial cells (LEC) in Cxcl12-dsRed reporter mice or littermate controls (Cxcl12+/+). (d) Frequency of Cxcl12+ in LECs, blood endothelial cells (CD45CD31+gp38, BEC), epithelial cells (CD45CD31EpCAM+, Epi), fibroblasts (CD45CD31PDGFRα+, Fibro) in YUMMER1.7 tumors of Cxcl12-dsRed reporter mice (n = 13; 3 independent experiments). (e) Frequency of Cxcl12+ in B cells (CD3ε-B220+), T cells (CD3ε+B220), neutrophils (CD3ε-B220CD11b+Ly6G+, Neutro), dendritic cells (CD3ε-B220CD11c+MHCII+, DCs), immature monocytes (CD3ε-B220CD11b+Ly6C+, Imm Mono), and macrophages (CD3εB220CD11b+Ly6CF4/80+MHCII+/−, TAMs) in YUMMER1.7 tumors of Cxcl12-dsRed reporter mice (n = 3). (f) RNAScope of Cxcl12 transcripts in YUMM1.7 tumors (purple); hematoxylin (blue). Repeated in 3 tumors. Left image: scale bar = 400 μm; middle and right images: scale bar = 200 μm (g) Frequency of Cxcl12+ in CD45stromal cells in YUMM1.7 tumors of Cxcl12-dsRed reporter mice (n = 3). (h) Frequency of Cxcl12+ CD45+ cells in YUMM1.7 tumors of Cxcl12-dsRed reporter mice (n = 3). (I and J) Frequency of Cxcl12+ BECs (i) or fibroblasts (j) from normal adjacent skin or YUMMER1.7 tumors in Cxcl12-dsRed reporter mice (n = 8; 2 independent experiments). (k) qRT-PCR of CXCL12 transcript levels from hypoxic LN LECs isolated from CXCL12WT or CXCL12ΔiProx1 mice (n = 3). Transcripts normalized to β-actin and represented as fold change from WT. (l) Lymphatic vessel dilation in tumors implanted in CXCL12WT or CXCL12ΔiProx1 mice (n = 5). (M and N) Quantification of total LEC as percent of live (m) and proportion of LYVE-1+ LECs (n). (O and P) Quantification of regulatory T cells (TREG, CD3ε+CD4+CD25+Foxp3+) as a percent of live (o) or of CD4+ T cells (p). For all graphs, each symbol represents one mouse. Two-sided paired (B, I, and J) and unpaired (K-P) student’s t-test. n.s. = not significant.

Source data

Extended Data Fig. 9 CXCR4 inhibition does not impact effector circulation or function.

(a) Frequency of CD8+ T cells in the blood (left) or lymph (right) following acute treatment with FTY720 (FTY) or AMD3100 (AMD). n = 3–5 mice per group. (b) Shannon diversity index for TCRβ sequences detected in YUMMER1.7 tumors 7 days post treatment with AMD3100 (AMD; n = 10) or vehicle control (Cont; n = 8). Error bars = standard error; center = mean. (c) Frequency of IFNγ+TNFα+ producing CD44+CD8+ T cells following ex vivo CD3/CD28 restimulation in the presence or absence of AMD3100. n = 5 (d) Frequency of IFNγ+TNFα+ producing endogenous CXCR4WT (n = 3) or CXCRΔUBC (n = 3) CD44+CD8+ T cells following ex vivo CD3/CD28 restimulation. (e) Frequency of IFNγ+TNFα+ producing CD44+CD8+ T cells following ex vivo CD3/CD28 restimulation in the presence (n = 3) or absence (n = 3) of recombinant murine 100 ng/ml CXCL12. For D-E, error bars = standard deviation; center = mean. For all graphs, each symbol represents one mouse. One-way ANOVA adjusted for multiple comparisons (A and C), two-sided Mann-Whitney test (b), two-sided, unpaired student’s t-test (D and E). (f) YUMM1.7 tumor growth during treatment with vehicle control (Cont; black; n = 5), AMD3100 (AMD; blue; n = 5), αPD-L1 (PD-L1; red; n = 5), or combination AMD3100 + αPD-L1 (A + P; green n = 5); one experiment. Fractions indicate rate of tumor control defined as daily growth rate <30mm3 post onset of therapy.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Table 1

TCRβ deep-sequencing data from intratumoral and egressed CD3ε+ T cells.

Supplementary Table 2

List of differentially expressed genes isolated from splenic, egressed and intratumoral CD44+CD8+ T cells.

Supplementary Table 3

List of differentially expressed genes by LECs isolated from naive skin and BPC melanomas.

Supplementary Table 4

TCRβ deep-sequencing data from CD3ε+ T cells collected from untreated or AMD3100-treated YUMMER1.7 tumors.

Supplementary Table 5

Antibody list.

Supplementary Table 6

Transcriptional signatures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steele, M.M., Jaiswal, A., Delclaux, I. et al. T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control. Nat Immunol 24, 664–675 (2023). https://doi.org/10.1038/s41590-023-01443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01443-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing