Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common ground: shared risk factors for type 1 diabetes and celiac disease

Abstract

Risk factors for most autoimmune diseases are multifactorial genetic variants modified by environmental risk factors. Type 1 diabetes and celiac disease share high-risk HLA haplotypes, and the prevalence of both diseases has increased in many regions during the past half century. Unknown environmental factors are suspected to have increased the disease penetrance. Celiac disease depends on immune responses to dietary gluten, whereas the environmental risk factors for type 1 diabetes are not yet clear. Here, we consider the shared heritable genetic factors and review evidence of the dietary and microbial exposures, particularly in early life, that might influence the pathogenesis of one or both diseases. A deeper mechanistic understanding of the environmental factors responsible for increased risk of these diseases should provide opportunities to manipulate exposure in children carrying defined risk markers and thus prevent and attenuate disease, as well as to identify new therapeutic strategies for patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenesis of T1D.
Fig. 2: Pathogenesis of celiac disease.
Fig. 3: Model of common features of immunological pathogenesis in T1D and CeD.

Similar content being viewed by others

References

  1. Strachan, D. P. Hay fever, hygiene, and household size. Br. Med. J. 299, 1259–1260 (1989).

    Article  CAS  Google Scholar 

  2. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  3. Macpherson, A. J., Hapfelmeier, S. & McCoy, K. D. The armed truce between the intestinal microflora and host mucosal immunity. Semin. Immunol. 19, 57–58 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. McSorley, H. J., Hewitson, J. P. & Maizels, R. M. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int. J. Parasitol. 43, 301–310 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Imperatore, G. et al. Projections of type 1 and type 2 diabetes burden in the U.S. population aged 20 years through 2050: dynamic modeling of incidence, mortality, and population growth. Diabetes Care 35, 2515–2520 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tuomilehto, J. The emerging global epidemic of type 1 diabetes. Curr. Diab. Rep. 13, 795–804 (2013).

    Article  PubMed  CAS  Google Scholar 

  7. Inshaw, J.R.J., Cutler, A.J., Burren, O.S., Stefana, M.I. & Todd, J.A. Approaches and advances in the genetic causes of autoimmune disease and their implications. Nat. Immunol. https://doi.org/10.1038/s41590-018-0129-8(2018).

  8. Singh, P. et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16, 823–836 (2018).

    Article  PubMed  Google Scholar 

  9. Gutierrez-Achury, J. et al. Contrasting the genetic background of type 1 diabetes and celiac disease autoimmunity. Diabetes Care 38, S37–S44 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nejentsev, S. et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450, 887–892 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Noble, J. A. & Erlich, H. A. Genetics of type 1 diabetes. Cold Spring Harb. Perspect. Med. 2, a007732 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hu, X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47, 898–905 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bourgey, M. et al. HLA related genetic risk for coeliac disease. Gut 56, 1054–1059 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Margaritte-Jeannin, P. et al. HLA-DQ relative risks for coeliac disease in European populations: a study of the European Genetics Cluster on Coeliac Disease. Tissue Antigens 63, 562–567 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Hagopian, W. et al. Co-occurrence of type 1 diabetes and celiac disease autoimmunity. Pediatrics 140, e20171305 (2017).

    Article  PubMed  Google Scholar 

  17. Ziegler, A. G. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. J. Am. Med. Assoc. 309, 2473–2479 (2013).

    Article  CAS  Google Scholar 

  18. McGinty, J. W. et al. Recognition of posttranslationally modified GAD65 epitopes in subjects with type 1 diabetes. Diabetes 63, 3033–3040 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Lummel, M. et al. Discovery of a selective islet peptidome presented by the highest-risk HLA-DQ8trans molecule. Diabetes 65, 732–741 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. Yang, J. et al. Antigen-specific T cell analysis reveals that active immune responses to β cell antigens are focused on a unique set of epitopes. J. Immunol. 199, 91–96 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Crawford, F. et al. Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc. Natl. Acad. Sci. USA 108, 16729–16734 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Levisetti, M. G., Suri, A., Petzold, S. J. & Unanue, E. R. The insulin-specific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. J. Immunol. 178, 6051–6057 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Stadinski, B. D. et al. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc. Natl. Acad. Sci. USA 107, 10978–10983 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yang, J. et al. Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc. Natl. Acad. Sci. USA 111, 14840–14845 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rubio-Tapia, A. et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 137, 88–93 (2009).

    Article  PubMed  Google Scholar 

  27. Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. Schuppan, D. et al. Identification of the autoantigen of celiac disease. Ann. NY Acad. Sci. 859, 121–126 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. Johansen, B. H. et al. Both alpha and beta chain polymorphisms determine the specificity of the disease-associated HLA-DQ2 molecules, with beta chain residues being most influential. Immunogenetics 45, 142–150 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. Vartdal, F. et al. The peptide binding motif of the disease associated HLA-DQ (α1* 0501, β1* 0201) molecule. Eur. J. Immunol. 26, 2764–2772 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. van de Wal, Y. et al. Unique peptide binding characteristics of the disease-associated DQ(alpha 1*0501, beta 1*0201) vs the non-disease-associated DQ(alpha 1*0201, beta 1*0202) molecule. Immunogenetics 46, 484–492 (1997).

    Article  PubMed  Google Scholar 

  32. Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4, 713–717 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. Jabri, B. & Sollid, L. M. T cells in celiac disease. J. Immunol. 198, 3005–3014 (2017).

    Article  PubMed  CAS  Google Scholar 

  34. Tack, G. J., Verbeek, W. H., Schreurs, M. W. & Mulder, C. J. The spectrum of celiac disease: epidemiology, clinical aspects and treatment. Nat. Rev. Gastroenterol. Hepatol. 7, 204–213 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. Iversen, R., Fleur du Pré, M., Di Niro, R. & Sollid, L. M. Igs as substrates for transglutaminase 2: implications for autoantibody production in celiac disease. J. Immunol. 195, 5159–5168 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nilsen, E. M. et al. Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 37, 766–776 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Petersen, J. et al. T-cell receptor recognition of HLA-DQ2–gliadin complexes associated with celiac disease. Nat. Struct. Mol. Biol. 21, 480–488 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Li, Y. et al. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J. 24, 2968–2979 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Setty, M. et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 149, 681–691.e10 (2015).

    Article  PubMed  CAS  Google Scholar 

  41. Hüe, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    Article  PubMed  Google Scholar 

  42. Kutlu, T. et al. Numbers of T cell receptor (TCR) alpha beta+ but not of TcR gamma delta+ intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 34, 208–214 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bhagat, G. et al. Small intestinal CD8+TCRgammadelta+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J. Clin. Invest. 118, 281–293 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Verbeek, W. H. et al. The presence of small intestinal intraepithelial gamma/delta T-lymphocytes is inversely correlated with lymphoma development in refractory celiac disease. Am. J. Gastroenterol 103, 3152–3158 (2008).

    Article  PubMed  Google Scholar 

  45. Ciccocioppo, R. et al. Cytolytic mechanisms of intraepithelial lymphocytes in coeliac disease (CoD). Clin. Exp. Immunol. 120, 235–240 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. USA 93, 12445–12450 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gale, E. A. The rise of childhood type 1 diabetes in the 20th century. Diabetes 51, 3353–3361 (2002).

    Article  PubMed  CAS  Google Scholar 

  48. Gillespie, K. M. et al. The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet 364, 1699–1700 (2004).

    Article  PubMed  Google Scholar 

  49. Hermann, R. et al. Temporal changes in the frequencies of HLA genotypes in patients with type 1 diabetes: indication of an increased environmental pressure? Diabetologia 46, 420–425 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. Gardner, S. G., Bingley, P. J., Sawtell, P. A., Weeks, S. & Gale, E. A. Rising incidence of insulin dependent diabetes in children aged under 5 years in the Oxford region: time trend analysis. Br. Med. J. 315, 713–717 (1997).

    Article  CAS  Google Scholar 

  51. Tuomilehto, J. et al. Increase in incidence of insulin-dependent diabetes mellitus among children in Finland. Int. J. Epidemiol. 24, 984–992 (1995).

    Article  PubMed  CAS  Google Scholar 

  52. Mayer-Davis, E. J. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 376, 1419–1429 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kyvik, K. O. et al. The epidemiology of type 1 diabetes mellitus is not the same in young adults as in children. Diabetologia 47, 377–384 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. Lionetti, E. et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N. Engl. J. Med. 371, 1295–1303 (2014).

    Article  PubMed  CAS  Google Scholar 

  55. Lionetti, E., Castellaneta, S., Francavilla, R., Pulvirenti, A. & Catassi, C. Mode of delivery and risk of celiac disease: Risk of Celiac Disease and Age at Gluten Introduction Cohort Study. J. Pediatr. 184, 81–86.e2 (2017).

    Article  PubMed  Google Scholar 

  56. Mårild, K., Stephansson, O., Montgomery, S., Murray, J. A. & Ludvigsson, J. F. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 142, 39–45.e3 (2012).

    Article  PubMed  Google Scholar 

  57. Vriezinga, S. L. et al. Randomized feeding intervention in infants at high risk for celiac disease. N. Engl. J. Med. 371, 1304–1315 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Aronsson, C. A. et al. Age at gluten introduction and risk of celiac disease. Pediatrics 135, 239–245 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Szajewska, H. et al. Systematic review with meta-analysis: early infant feeding and coeliac disease: update 2015. Aliment. Pharmacol. Ther. 41, 1038–1054 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Pinto-Sánchez, M. I. et al. Gluten introduction to infant feeding and risk of celiac disease: systematic review and meta-analysis. J. Pediatr. 168, 132–143.e3 (2016).

    Article  PubMed  CAS  Google Scholar 

  61. Crespo-Escobar, P. et al. The role of gluten consumption at an early age in celiac disease development: a further analysis of the prospective PreventCD cohort study. Am. J. Clin. Nutr. 105, 890–896 (2017).

    Article  PubMed  CAS  Google Scholar 

  62. Karges, W. et al. Immunological aspects of nutritional diabetes prevention in NOD mice: a pilot study for the cow’s milk-based IDDM prevention trial. Diabetes 46, 557–564 (1997).

    Article  PubMed  CAS  Google Scholar 

  63. Malkani, S. et al. Dietary cow’s milk protein does not alter the frequency of diabetes in the BB rat. Diabetes 46, 1133–1140 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. Paxson, J. A., Weber, J. G. & Kulczycki, A. Jr. Cow’s milk-free diet does not prevent diabetes in NOD mice. Diabetes 46, 1711–1717 (1997).

    Article  PubMed  CAS  Google Scholar 

  65. Simonson, W., Ramanathan, S., Bieg, S., Poussier, P. & Lernmark, A. Protein-free diets do not protect high-incidence diabetes-prone BioBreeding rats from diabetes. Metabolism 51, 569–574 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. Knip, M. et al. Dietary intervention in infancy and later signs of beta-cell autoimmunity. N. Engl. J. Med. 363, 1900–1908 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Knip, M. et al. Hydrolyzed infant formula and early β-cell autoimmunity: a randomized clinical trial. J. Am. Med. Assoc. 311, 2279–2287 (2014).

    Article  CAS  Google Scholar 

  68. Hyytinen, M. et al. Avoidance of cow’s milk-based formula for at-risk infants does not reduce development of celiac disease: a randomized controlled trial. Gastroenterology 153, 961–970.e963 (2017).

    Article  PubMed  CAS  Google Scholar 

  69. Hansen, C. H. et al. A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes 63, 2821–2832 (2014).

    Article  PubMed  CAS  Google Scholar 

  70. Kimpimäki, T. et al. The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J. Clin. Endocrinol. Metab. 86, 4782–4788 (2001).

    PubMed  Google Scholar 

  71. Krischer, J. P. et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58, 980–987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Parikka, V. et al. Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 55, 1926–1936 (2012).

    Article  PubMed  CAS  Google Scholar 

  73. Ziegler, A. G. & Bonifacio, E. Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia 55, 1937–1943 (2012).

    Article  PubMed  CAS  Google Scholar 

  74. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108(Suppl. 1), 4578–4585 (2011).

    Article  PubMed  Google Scholar 

  75. Planer, J. D. et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534, 263–266 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    Article  PubMed  CAS  Google Scholar 

  78. Renz, H., Brandtzaeg, P. & Hornef, M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol. 12, 9–23 (2011).

    Article  PubMed  CAS  Google Scholar 

  79. Clausen, T. D. et al. Prelabor cesarean section and risk of childhood type 1 diabetes: a nationwide register-based cohort study. Epidemiology 27, 547–555 (2016).

    Article  PubMed  Google Scholar 

  80. Samuelsson, U. et al. Caesarean section per se does not increase the risk of offspring developing type 1 diabetes: a Swedish population-based study. Diabetologia 58, 2517–2524 (2015).

    Article  PubMed  Google Scholar 

  81. Sevelsted, A., Stokholm, J., Bønnelykke, K. & Bisgaard, H. Cesarean section and chronic immune disorders. Pediatrics 135, e92–e98 (2015).

    Article  PubMed  Google Scholar 

  82. Bonifacio, E., Warncke, K., Winkler, C., Wallner, M. & Ziegler, A. G. Cesarean section and interferon-induced helicase gene polymorphisms combine to increase childhood type 1 diabetes risk. Diabetes 60, 3300–3306 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Brown, C. T. et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6, e25792 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. de Goffau, M. C. et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62, 1238–1244 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Giongo, A. et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5, 82–91 (2011).

    Article  PubMed  CAS  Google Scholar 

  87. Kostic, A. D. et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17, 260–273 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. TEDDY Study Group. The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr. Diabetes 8, 286–298 (2007).

    Article  Google Scholar 

  89. Kemppainen, K. M. et al. Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 38, 329–332 (2015).

    Article  PubMed  Google Scholar 

  90. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  PubMed  CAS  Google Scholar 

  91. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  PubMed  CAS  Google Scholar 

  92. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  PubMed  CAS  Google Scholar 

  93. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    Article  PubMed  CAS  Google Scholar 

  94. Patel, O. et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat. Commun. 4, 2142 (2013).

    Article  PubMed  CAS  Google Scholar 

  95. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. McKenzie, C. I., Mackay, C. R. & Macia, L. GPR43: a prototypic metabolite sensor linking metabolic and inflammatory diseases. Trends Endocrinol. Metab. 26, 511–512 (2015).

    Article  PubMed  CAS  Google Scholar 

  98. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  PubMed  CAS  Google Scholar 

  99. Mariño, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    Article  PubMed  CAS  Google Scholar 

  100. Sun, J. et al. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43, 304–317 (2015).

    Article  PubMed  CAS  Google Scholar 

  101. Gallo, R. L. & Hooper, L. V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12, 503–516 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mukherjee, S. & Hooper, L. V. Antimicrobial defense of the intestine. Immunity 42, 28–39 (2015).

    Article  PubMed  CAS  Google Scholar 

  103. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  PubMed  CAS  Google Scholar 

  104. Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zou, J. et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23, 41–53.e44 (2018).

    Article  PubMed  CAS  Google Scholar 

  106. Aujla, S. J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14, 275–281 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  PubMed  CAS  Google Scholar 

  108. Hanash, A. M. et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37, 339–350 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hober, D. & Sauter, P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat. Rev. Endocrinol. 6, 279–289 (2010).

    Article  PubMed  Google Scholar 

  111. Op de Beeck, A. & Eizirik, D. L. Viral infections in type 1 diabetes mellitus: why the β cells? Nat. Rev. Endocrinol. 12, 263–273 (2016).

    Article  PubMed  CAS  Google Scholar 

  112. Smyth, D. J. et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 38, 617–619 (2006).

    Article  PubMed  CAS  Google Scholar 

  113. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Winkler, C. et al. An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes. Diabetes 60, 685–690 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Witsø, E. et al. Polymorphisms in the innate immune IFIH1 gene, frequency of enterovirus in monthly fecal samples during infancy, and islet autoimmunity. PLoS One 6, e27781 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Gorman, J. A. et al. The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat. Immunol. 18, 744–752 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Penno, M. A. et al. Environmental Determinants of Islet Autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes. BMC Pediatr. 13, 124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Phillips, J. E., Couper, J. J., Penno, M. A. S. & Harrison, L. C., ENDIA Study Group. Type 1 diabetes: a disease of developmental origins. Pediatr. Diabetes 18, 417–421 (2017).

    Article  PubMed  Google Scholar 

  120. Hebbandi Nanjundappa, R. et al. A gut microbial mimic that hijacks diabetogenic autoreactivity to suppress colitis. Cell 171, 655–667.e617 (2017).

    Article  PubMed  CAS  Google Scholar 

  121. Anderson, B., Park, B. J., Verdaguer, J., Amrani, A. & Santamaria, P. Prevalent CD8+ T cell response against one peptide/MHC complex in autoimmune diabetes. Proc. Natl. Acad. Sci. USA 96, 9311–9316 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Verdaguer, J. et al. Acceleration of spontaneous diabetes in TCR-beta-transgenic nonobese diabetic mice by beta-cell cytotoxic CD8+ T cells expressing identical endogenous TCR-alpha chains. J. Immunol. 157, 4726–4735 (1996).

    PubMed  CAS  Google Scholar 

  123. Le Bourhis, L., Mburu, Y. K. & Lantz, O. MAIT cells, surveyors of a new class of antigen: development and functions. Curr. Opin. Immunol. 25, 174–180 (2013).

    Article  PubMed  CAS  Google Scholar 

  124. Kemppainen, K. M. et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin. Gastroenterol. Hepatol. 15, 694–702.e5 (2017).

    Article  PubMed  Google Scholar 

  125. Kagnoff, M. F. et al. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut 28, 995–1001 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Stene, L. C. et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am. J. Gastroenterol. 101, 2333–2340 (2006).

    Article  PubMed  CAS  Google Scholar 

  127. Mårild, K., Kahrs, C. R., Tapia, G., Stene, L. C. & Størdal, K. Infections and risk of celiac disease in childhood: a prospective nationwide cohort study. Am. J. Gastroenterol. 110, 1475–1484 (2015).

    Article  PubMed  Google Scholar 

  128. Verdu, E. F., Mauro, M., Bourgeois, J. & Armstrong, D. Clinical onset of celiac disease after an episode of Campylobacter jejuni enteritis. Can. J. Gastroenterol. 21, 453–455 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Riddle, M. S., Murray, J. A., Cash, B. D., Pimentel, M. & Porter, C. K. Pathogen-specific risk of celiac disease following bacterial causes of foodborne illness: a retrospective cohort study. Dig. Dis. Sci. 58, 3242–3245 (2013).

    Article  PubMed  Google Scholar 

  130. Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. De Palma, G. et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 10, 63 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Wacklin, P. et al. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am. J. Gastroenterol. 109, 1933–1941 (2014).

    Article  PubMed  CAS  Google Scholar 

  133. D’Argenio, V. et al. Metagenomics reveals dysbiosis and a potentially pathogenic n. flavescens strain in duodenum of adult celiac patients. Am. J. Gastroenterol. 111, 879–890 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Verdu, E. F., Galipeau, H. J. & Jabri, B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 12, 497–506 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  PubMed  CAS  Google Scholar 

  136. Kverka, M. et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin. Exp. Immunol. 163, 250–259 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Galipeau, H. J. et al. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am. J. Pathol. 185, 2969–2982 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Caminero, A. et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151, 670–683 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  PubMed  CAS  Google Scholar 

  141. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  142. Elfström, P., Sundström, J. & Ludvigsson, J. F. Systematic review with meta-analysis: associations between coeliac disease and type 1 diabetes. Aliment. Pharmacol. Ther. 40, 1123–1132 (2014).

    Article  PubMed  Google Scholar 

  143. Craig, M. E. et al. Prevalence of celiac disease in 52,721 youth with type 1 diabetes: international comparison across three continents. Diabetes Care 40, 1034–1040 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Maltoni, G. et al. Comment on Craig et al. Prevalence of celiac disease in 52,721 youth with type 1 diabetes: international comparison across three continents. Diabetes Care 2017 40, 1034–1040. Diabetes Care 40, e167 (2017).

    Google Scholar 

  145. Beyerlein, A. et al. Timing of gluten introduction and islet autoimmunity in young children: updated results from the BABYDIET study. Diabetes Care 37, e194–e195 (2014).

    Article  PubMed  Google Scholar 

  146. Chmiel, R. et al. Early infant feeding and risk of developing islet autoimmunity and type 1 diabetes. Acta Diabetol. 52, 621–624 (2015).

    Article  PubMed  CAS  Google Scholar 

  147. Hummel, S., Pflüger, M., Hummel, M., Bonifacio, E. & Ziegler, A. G. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care 34, 1301–1305 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Galipeau, H. J. et al. Sensitization to gliadin induces moderate enteropathy and insulitis in nonobese diabetic-DQ8 mice. J. Immunol. 187, 4338–4346 (2011).

    Article  PubMed  CAS  Google Scholar 

  149. Parkkola, A. et al. Transglutaminase antibodies and celiac disease in children with type 1 diabetes and in their family members. Pediatr. Diabetes 19, 305–313 (2017).

    Article  PubMed  CAS  Google Scholar 

  150. Brorsson, C. A. & Pociot, F., Type 1 Diabetes Genetics Consortium. Shared genetic basis for type 1 diabetes, islet autoantibodies, and autoantibodies associated with other immune-mediated diseases in families with type 1 diabetes. Diabetes Care 38(Suppl. 2), S8–S13 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Castellaneta, S. et al. High rate of spontaneous normalization of celiac serology in a cohort of 446 children with type 1 diabetes: a prospective study. Diabetes Care 38, 760–766 (2015).

    Article  PubMed  CAS  Google Scholar 

  152. Adlercreutz, E. H., Wingren, C. J., Vincente, R. P., Merlo, J. & Agardh, D. Perinatal risk factors increase the risk of being affected by both type 1 diabetes and coeliac disease. Acta Paediatr. 104, 178–184 (2015).

    Article  PubMed  Google Scholar 

  153. Welander, A., Montgomery, S. M., Ludvigsson, J. & Ludvigsson, J. F. Infectious disease at gluten introduction and risk of childhood diabetes mellitus. J. Pediatr. 165, 326–331.e321 (2014).

    Article  PubMed  Google Scholar 

  154. Uibo, R. et al. Celiac disease in patients with type 1 diabetes: a condition with distinct changes in intestinal immunity? Cell. Mol. Immunol. 8, 150–156 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Gorelick, J. et al. The impact of diet wheat source on the onset of type 1 diabetes mellitus-lessons learned from the non-obese diabetic (NOD) mouse model. Nutrients 9, E482 (2017).

    Article  PubMed  CAS  Google Scholar 

  156. Bruun, S. W. et al. Large gliadin peptides detected in the pancreas of Nod and healthy mice following oral administration. J. Diabetes Res. 2016, 2424306 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Adlercreutz, E. H. et al. A gluten-free diet lowers NKG2D and ligand expression in BALB/c and non-obese diabetic (NOD) mice. Clin. Exp. Immunol. 177, 391–403 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Funda, D. P., Fundova, P., Hansen, A. K. & Buschard, K. Prevention or early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice. PLoS One 9, e94530 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Marietta, E. V. et al. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One 8, e78687 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

J.S.D. is supported by the Juvenile Diabetes Research Foundation; by the Canadian Institutes of Health Research (CIHR); as the Anne and Max Tanenbaum Chair in Molecular Medicine, University of Toronto; and by the Hospital for Sick Children (SickKids) Foundation. E.F.V. is supported as a Canada Research Chair and by CIHR #142773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne S. Danska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdu, E.F., Danska, J.S. Common ground: shared risk factors for type 1 diabetes and celiac disease. Nat Immunol 19, 685–695 (2018). https://doi.org/10.1038/s41590-018-0130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0130-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing