Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An intramolecular macrocyclase in plant ribosomal peptide biosynthesis

Abstract

The biosynthetic dogma of ribosomally synthesized and posttranslationally modified peptides (RiPP) involves enzymatic intermolecular modification of core peptide motifs in precursor peptides. The plant-specific BURP-domain protein family, named after their four founding members, includes autocatalytic peptide cyclases involved in the biosynthesis of side-chain-macrocyclic plant RiPPs. Here we show that AhyBURP, a representative of the founding Unknown Seed Protein-type BURP-domain subfamily, catalyzes intramolecular macrocyclizations of its core peptide during the sequential biosynthesis of monocyclic lyciumin I via glycine-tryptophan crosslinking and bicyclic legumenin via glutamine-tyrosine crosslinking. X-ray crystallography of AhyBURP reveals the BURP-domain fold with two type II copper centers derived from a conserved stapled-disulfide and His motif. We show the macrocyclization of lyciumin-C(sp3)-N-bond formation followed by legumenin-C(sp3)-O-bond formation requires dioxygen and radical involvement based on enzyme assays in anoxic conditions and isotopic labeling. Our study expands enzymatic intramolecular modifications beyond catalytic moiety and chromophore biogenesis to RiPP biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The BURP-domain protein family and USP-type BURP-domain legumenin cyclase AhyBURP.
Fig. 2: Crystal structure of AhyBURP and copper sites.
Fig. 3: AhyBURP reaction.
Fig. 4: AhyBURP mechanistic investigation.
Fig. 5: Intramolecular macrocyclization in AhyBURP.

Similar content being viewed by others

Data availability

Atomic coordinates and processed diffraction data have been deposited in the PDB under accession codes 8SY2 and 8SY3. Proteomic datasets for Figs. 4 and 5 were uploaded to MassIVE, accession code MSV000093708. The data that support the findings of this study are available within the main text and its Supplementary Information. Source data are provided with this paper. Data are also available from the corresponding authors upon request.

References

  1. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  PubMed  Google Scholar 

  3. Hallen, H. E., Luo, H., Scott-Craig, J. S. & Walton, J. D. Gene family encoding the major toxins of lethal Amanita mushrooms. Proc. Natl Acad. Sci. USA 104, 19097–19101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaletta, C. & Entian, K. D. Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J. Bacteriol. 171, 1597–1601 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jennings, C., West, J., Waine, C., Craik, D. & Anderson, M. Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc. Natl Acad. Sci. USA 98, 10614–10619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Velden, N. S. et al. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products. Nat. Chem. Biol. 13, 833–835 (2017).

    Article  PubMed  Google Scholar 

  7. Chigumba, D. N. et al. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases. Nat. Chem. Biol. 18, 18–28 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Song, H. et al. A molecular mechanism for the enzymatic methylation of nitrogen atoms within peptide bonds. Sci. Adv. 4, eaat2720 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mydy, L. S., Chigumba, D. N. & Kersten, R. D. Plant copper metalloenzymes as prospects for new metabolism involving aromatic compounds. Front. Plant Sci. 12, 692108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yonekura-Sakakibara, K. et al. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. Plant Cell 33, 129–152 (2020).

    PubMed Central  Google Scholar 

  11. Yoshida, T. et al. Laccase-catalyzed polymerization of lignocatechol and affinity on proteins of resulting polymers. J. Polym. Sci. A Polym. Chem. 47, 824–832 (2009).

    Article  CAS  Google Scholar 

  12. Nakayama, T. et al. Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290, 1163–1166 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Zekiri, F. et al. Purification and characterization of tyrosinase from walnut leaves (Juglans regia). Phytochemistry 101, 5–15 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pretzler, M. & Rompel, A. What causes the different functionality in type-III-copper enzymes? A state of the art perspective. Inorg. Chim. Acta 481, 25–31 (2018).

    Article  CAS  Google Scholar 

  15. Marchesini, A., Capelletti, P., Canonica, L., Danieli, B. & Tollari, S. Evidence about the catecholoxidase activity of the enzyme ascorbate oxidase extracted from Cucurbita pepo medullosa. Biochim. Biophys. Acta 484, 290–300 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Prigge, S. T., Kolhekar, A. S., Eipper, B. A., Mains, R. E. & Amzel, L. M. Substrate-mediated electron transfer in peptidylglycine α-hydroxylating monooxygenase. Nat. Struct. Biol. 6, 976–983 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Arias, R. J., Welch, E. F. & Blackburn, N. J. New structures reveal flexible dynamics between the subdomains of peptidylglycine monooxygenase. Implications for an open to closed mechanism. Protein Sci. 32, e4615 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Hattori, J., Boutilier, K. A., van Lookeren Campagne, M. M. & Miki, B. L. A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol. Gen. Genet. 259, 424–428 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Treacy, B. K. et al. Bnm1, a Brassica pollen-specific gene. Plant Mol. Biol. 34, 603–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, L., Heupel, R. C. & DellaPenna, D. The beta subunit of tomato fruit polygalacturonase isoenzyme 1: isolation, characterization, and identification of unique structural features. Plant Cell 4, 1147–1156 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamaguchi-Shinozaki, K. & Shinozaki, K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol. Gen. Genet. 238, 17–25 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Bassüner, R. et al. Abundant embryonic mRNA in field bean (Vicia faba L.) codes for a new class of seed proteins: cDNA cloning and characterization of the primary translation product. Plant Mol. Biol. 11, 321–334 (1988).

    Article  PubMed  Google Scholar 

  24. Xu, H. et al. Genome-scale identification of soybean BURP domain-containing genes and their expression under stress treatments. BMC Plant Biol. 10, 197 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kersten, R. D. & Weng, J.-K. Gene-guided discovery and engineering of branched cyclic peptides in plants. Proc. Natl Acad. Sci. USA 115, E10961–E10969 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kersten, R. D. et al. Gene-guided discovery and ribosomal biosynthesis of moroidin. J. Am. Chem. Soc. 144, 7686–7692 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Tschesche, R. & Kaußmann, E. U. Chapter 4 The Cyclopeptide Alkaloids in The Alkaloids: Chemistry and Physiology Vol. 15 (ed. Manske, R. H. F.) 165–205 (Academic Press 1975).

  28. Lima, S. T. et al. A widely distributed biosynthetic cassette is responsible for diverse plant side chain cross‐linked cyclopeptides. Angew. Chem. Int. Ed. 62, e202218082 (2023).

    Article  CAS  Google Scholar 

  29. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Messerschmidt, A. in Comprehensive Natural Products III (eds Liu, H.-W. & Begley, T. P.) 251–297 (Elsevier, 2010).

  31. Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clark, K. M. et al. Transforming a blue copper into a red copper protein: engineering cysteine and homocysteine into the axial position of azurin using site-directed mutagenesis and expressed protein ligation. J. Am. Chem. Soc. 132, 10093–10101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M. & Canters, G. W. Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0: a pH-induced conformational transition involves a peptide bond flip. J. Mol. Biol. 221, 765–772 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Kaufman Katz, A. et al. Copper-binding motifs: structural and theoretical aspects. Helv. Chim. Acta 86, 1320–1338 (2003).

    Article  Google Scholar 

  35. Harding, M. M., Nowicki, M. W. & Walkinshaw, M. D. Metals in protein structures: a review of their principal features. Crystallogr. Rev. 16, 247–302 (2010).

    Article  CAS  Google Scholar 

  36. Prigge, S. T., Kolhekar, A. S., Eipper, B. A., Mains, R. E. & Amzel, L. M. Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase. Science 278, 1300–1305 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Ro, S. Y. et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat. Commun. 10, 2675 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Donnelly, D. P. et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat. Methods 16, 587–594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Urvoas, A. et al. Metal-binding stoichiometry and selectivity of the copper chaperone CopZ from Enterococcus hirae. Eur. J. Biochem. 271, 993–1003 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Peng, L. et al. Effects of metal ions and disulfide bonds on the activity of phosphodiesterase from Trimeresurus stejnegeri venom. Metallomics 5, 920–927 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, R. C., Reed, V. D. & Hill, W. E. Oxidation of thiols by copper(II). Phosphorus, Sulfur Silicon Relat. Elem. 90, 147–154 (1994).

    Article  CAS  Google Scholar 

  42. Thibodeau, P. A., Kocsis-Bédard, S., Courteau, J., Niyonsenga, T. & Paquette, B. Thiols can either enhance or suppress DNA damage induction by catecholestrogens. Free Radic. Biol. Med. 30, 62–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Krȩżel, A. et al. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J. Inorg. Biochem. 84, 77–88 (2001).

    Article  Google Scholar 

  44. Eben, S. S. & Imlay, J. A. Excess copper catalyzes protein disulfide bond formation in the bacterial periplasm but not in the cytoplasm. Mol. Microbiol. 119, 423–438 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Tang, Y. et al. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses. PLoS ONE 9, e98830 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zechmann, B. Subcellular distribution of ascorbate in plants. Plant Signal. Behav. 6, 360–363 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zechmann, B. Subcellular roles of glutathione in mediating plant defense during biotic stress. Plants 9, 1067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Covington, B. C. & Seyedsayamdost, M. R. Vitamin B3 triggers biosynthesis of secondary metabolite dormancy signals in Streptococcus suis. J. Am. Chem. Soc. 144, 14997–15001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clark, K. A., Bushin, L. B. & Seyedsayamdost, M. R. Aliphatic ether bond formation expands the scope of radical SAM enzymes in natural product biosynthesis. J. Am. Chem. Soc. 141, 10610–10615 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Welch, E. F., Rush, K. W., Arias, R. J. & Blackburn, N. J. Copper monooxygenase reactivity: do consensus mechanisms accurately reflect experimental observations? J. Inorg. Biochem. 231, 111780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Williams, P. J. H. et al. New approach to the detection of short-lived radical intermediates. J. Am. Chem. Soc. 144, 15969–15976 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. TEMPO in metal complex catalysis. Coord. Chem. Rev. 423, 213482 (2020).

    Article  CAS  Google Scholar 

  53. Wright, P. J. & English, A. M. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping. J. Am. Chem. Soc. 125, 8655–8665 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Caruso, A., Bushin, L. B., Clark, K. A., Martinie, R. J. & Seyedsayamdost, M. R. Radical approach to enzymatic β-thioether bond formation. J. Am. Chem. Soc. 141, 990–997 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Clark, K. A. & Seyedsayamdost, M. R. Bioinformatic atlas of radical SAM enzyme-modified RiPP natural products reveals an isoleucine–tryptophan crosslink. J. Am. Chem. Soc. 144, 17876–17888 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Lin, M. T. et al. Escherichia coli auxotroph host strains for amino acid-selective isotope labeling of recombinant proteins. Methods Enzymol. 565, 45–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Weng, J.-K., Philippe, R. N. & Noel, J. P. The rise of chemodiversity in plants. Science 336, 1667–1670 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Vendelboe, T. V. et al. The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Sci. Adv. 2, e1500980 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alwan, K. B., Welch, E. F., Arias, R. J., Gambill, B. F. & Blackburn, N. J. Rational design of a histidine-methionine site modeling the M-center of copper monooxygenases in a small metallochaperone scaffold. Biochemistry 58, 3097–3108 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, P. et al. Theory demonstrated a ‘coupled’ mechanism for O2 activation and substrate hydroxylation by binuclear copper monooxygenases. J. Am. Chem. Soc. 141, 19776–19789 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Molitor, C., Mauracher, S. G. & Rompel, A. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Proc. Natl Acad. Sci. USA 113, E1806–E1815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Klabunde, T., Eicken, C., Sacchettini, J. C. & Krebs, B. Crystal structure of a plant catechol oxidase containing a dicopper center. Nat. Struct. Biol. 5, 1084–1090 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Dubois, J. L. & Klinman, J. P. Mechanism of post-translational quinone formation in copper amine oxidases and its relationship to the catalytic turnover. Arch. Biochem. Biophys. 433, 255–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Baedeker, M. & Schulz, G. E. Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase. Structure 10, 61–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A. & Getzoff, E. D. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proc. Natl Acad. Sci. USA 100, 12111–12116 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Blair, W. S. & Semler, B. L. Self-cleaving proteases. Curr. Opin. Cell Biol. 3, 1039–1045 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Brannigan, J. A. et al. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378, 416–419 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Ramm, S. et al. A self-sacrificing N-methyltransferase is the precursor of the fungal natural product omphalotin. Angew. Chem. Int. Ed. Engl. 56, 9994–9997 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Miller, F. S. et al. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis. Nat. Commun. 12, 5355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ongpipattanakul, C. & Nair, S. K. Molecular basis for autocatalytic backbone N-methylation in RiPP natural product biosynthesis. ACS Chem. Biol. 13, 2989–2999 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Oberg, N., Zallot, R. & Gerlt, J. A. EFI-EST, EFI-GNT, and EFI-CGFP: Enzyme Function Initiative (EFI) web resource for genomic enzymology tools. J. Mol. Biol. 435, 168018 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Nelson, C. A., Lee, C. A. & Fremont, D. H. Oxidative refolding from inclusion bodies. Methods Mol. Biol. 1140, 145–157 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Gasteiger, E. et al. in The Proteomics Protocols Handbook (ed. Walker, J. M.) 571–607 (Humana, 2005).

  77. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2009).

    Article  Google Scholar 

  78. Winter, G. et al. DIALS as a toolkit. Protein Sci. 31, 232–250 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D. Struct. Biol. 74, 85–97 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kovalevskiy, O., Nicholls, R. A., Long, F., Carlon, A. & Murshudov, G. N. Overview of refinement procedures within REFMAC5: utilizing data from different sources. Acta Crystallogr. D. Struct. Biol. 74, 215–227 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D. Struct. Biol. 74, 519–530 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S. & Thornton, J. M. PDBsum: structural summaries of PDB entries. Protein Sci. 27, 129–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Holm, L., Laiho, A., Törönen, P. & Salgado, M. DALI shines a light on remote homologs: one hundred discoveries. Protein Sci. 32, e4519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01773-0 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nicholls, R. A., Fischer, M., McNicholas, S. & Murshudov, G. N. Conformation-independent structural comparison of macromolecules with ProSMART. Acta Crystallogr. D. Biol. Crystallogr. 70, 2487–2499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gucwa, M. et al. CMM-An enhanced platform for interactive validation of metal binding sites. Protein Sci. 32, e4525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Handing, K. B. et al. Characterizing metal-binding sites in proteins with X-ray crystallography. Nat. Protoc. 13, 1062–1090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng, H. et al. CheckMyMetal: a macromolecular metal-binding validation tool. Acta Crystallogr. D. Struct. Biol. 73, 223–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng, H. et al. Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat. Protoc. 9, 156–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Appel, M. J. & Meier, K. K. Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O2 activation. Proc. Natl Acad. Sci. USA 116, 5370–5375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D. Struct. Biol. 73, 148–157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. The PyMOL molecular graphics system (Schrödinger LLC, 2023).

Download references

Acknowledgements

This study was supported by NIGMS (grant nos. R35GM146934 to R.D.K., F32GM146395 to L.S.M.), NIDDK (grant no. R01DK042303 to J.L.S.), the Hermann Frasch Foundation (R.D.K.) and the PhRMA foundation (predoctoral fellowship, D.N.C.). We thank the University of Michigan Center for Structural Biology and E. Scott for crystallography resources and for fast protein liquid chromatography (FPLC) use. We appreciate T. Cernak for access to synthetic resources, B. Palfey for spectrophotometer and fluorometer access, J. Bridwell-Rabb for glove box access and M. Knapp for training L.S.M. We are grateful to T. Cernak, B. Palfey and J. Bridwell-Rabb for helpful discussions as well. We also thank G. Lomonosoff (John Innes Centre, UK) for sharing the pEAQ-HT vector. GM/CA at the Advanced Photon Source has been funded by the National Cancer Institute (grant no. ACB-12002) and the National Institute of General Medical Sciences (grant nos. AGM-12006, P30GM138396). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The Eiger 16M detector at GM/CA-XSD was funded by a National Institutes of Health grant no. S10 OD012289. L.S.M. thanks Q. Xu for aid in determining anomalous difference density.

Author information

Authors and Affiliations

Authors

Contributions

L.S.M., J.L.S. and R.D.K. designed experiments, interpreted data and wrote initial and final drafts of the manuscript. L.S.M., J.H., J.R.K., S.C.J., D.W. and R.D.K. performed experiments and analyzed data. D.N.C. generated the sequence similarity network and its analysis. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Lisa S. Mydy or Roland D. Kersten.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Ninian Blackburn and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–4, Figs. 1–35 and references.

Reporting Summary

Supplementary Data 1

PDB Validation report for PDB ID 8SY2.

Supplementary Data 2

PDB Validation report for PDB ID 8SY3.

Source data

Source Data Fig. 3

AhyBURP genes and EIC peak areas in Fig. 3.

Source Data Fig. 4

MassIVE datasets for Fig. 4.

Source Data Fig. 5

MassIVE datasets for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mydy, L.S., Hungerford, J., Chigumba, D.N. et al. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat Chem Biol 20, 530–540 (2024). https://doi.org/10.1038/s41589-024-01552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-024-01552-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing